CNN-LSTM vs. LSTM-CNN to Predict Power Flow Direction: A Case Study of the High-Voltage Subnet of Northeast Germany
Abstract
:1. Introduction
- We present and analyse a hybrid deep learning model for predicting the direction of power flow in a single feeder of the power grid.
- We compare and evaluate the performance of the proposed HDL model (CNN-LSTM versus LSTM-CNN) with baseline models (CNN only and LSTM only) for power flow prediction.
- We investigate how weather data can influence the prediction result to determine the direction of power flow in the studied power system.
- We investigate how the HDL model behaves when the input data used has a different size and different parameters.
2. Related Work
3. Deep Learning Model Structures
3.1. Long Short-Term Memory (LSTM) Network
3.2. Convolutional Neural Network (CNN)
3.3. Hybrid Deep Learning Model
4. Methodology
4.1. Step 1: Data Collection
4.2. Step 2: Data Pre-Processing
4.2.1. Data Normalization
4.2.2. Dataset Splitting
4.3. Step 3: Build Prediction Models
4.4. Step 4: Evaluate the Proposed HDL Model
5. Case Study and Dataset Description
5.1. Bi-Directional Power Flow Measurement Data
5.2. Weather Data
- Ground air temperature (2 m above ground) (°C);
- Ground wind speed (10 m above ground) (m/s);
- Solar irradiation (W/m2).
6. Result and Discussion
6.1. A Comparison of the Hybrid Deep Learning Model for Predicting the Direction of Power Flow of Each Line Based on Real Power Measurement Data Only
6.2. A Comparison of the Hybrid Deep Learning Model for Predicting the Direction of Power Flow of Each Line Based on Real Power Measurement Data and Local Weather Data
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Dong, Z.; Li, R.; Wang, L. Renewable energy and economic growth: New insight from country risks. Energy 2022, 238, 122018. [Google Scholar] [CrossRef]
- Aslam, M.; Lee, J.-M.; Kim, H.-S.; Lee, S.-J.; Hong, S. Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study. Energies 2019, 13, 147. [Google Scholar] [CrossRef] [Green Version]
- Brauns, K.; Scholz, C.; Schultz, A.; Baier, A.; Jost, D. Vertical power flow forecast with LSTMs using regular training update strategies. Energy AI 2021, 8, 100143. [Google Scholar] [CrossRef]
- Li, Y.; Janik, P.; Schwarz, H.; Pfeiffer, K. Proposal of a regional grid cluster model for analysis of electrical power net-work performance. Arch. Electr. Eng. 2022, 71, 601–613. [Google Scholar]
- Suresh, G.; Prasad, D.; Gopila, M. An efficient approach based power flow management in smart grid system with hybrid renewable energy sources. Renew. Energy Focus 2021, 39, 110–122. [Google Scholar] [CrossRef]
- Aslam, S.; Herodotou, H.; Mohsin, S.M.; Javaid, N.; Ashraf, N.; Aslam, S. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew. Sustain. Energy Rev. 2021, 144, 110992. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, S.; Miao, Z.; He, C.; Liu, S. Review of The Application of Deep Learning in Fault Diagnosis. Chin. Control Conf. CCC 2019, 2019, 4951–4955. [Google Scholar] [CrossRef]
- Aksan, F.; Janik, P.; Suresh, V.; Leonowicz, Z. Review of the application of deep learning for fault detection in wind turbine. In Proceedings of the 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Prague, Czech Republic, 28 June 2022—1 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Alkhayat, G.; Mehmood, R. A review and taxonomy of wind and solar energy forecasting methods based on deep learning. Energy AI 2021, 4, 100060. [Google Scholar] [CrossRef]
- Cecaj, A.; Lippi, M.; Mamei, M.; Zambonelli, F. Comparing Deep Learning and Statistical Methods in Forecasting Crowd Distribution from Aggregated Mobile Phone Data. Appl. Sci. 2020, 10, 6580. [Google Scholar] [CrossRef]
- Fallah, S.N.; Deo, R.C.; Shojafar, M.; Conti, M.; Shamshirband, S. Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions. Energies 2018, 11, 596. [Google Scholar] [CrossRef]
- Wu, Y.-X.; Wu, Q.-B.; Zhu, J.-Q. Data-driven wind speed forecasting using deep feature extraction and LSTM. IET Renew. Power Gener. 2019, 13, 2062–2069. [Google Scholar] [CrossRef]
- Yu, C.; Li, Y.; Bao, Y.; Tang, H.; Zhai, G. A novel framework for wind speed prediction based on recurrent neural networks and support vector machine. Energy Convers. Manag. 2018, 178, 137–145. [Google Scholar] [CrossRef]
- Tong, X.; Wang, J.; Zhang, C.; Wu, T.; Wang, H.; Wang, Y. LS-LSTM-AE: Power load forecasting via Long-Short series features and LSTM-Autoencoder. Energy Rep. 2022, 8, 596–603. [Google Scholar] [CrossRef]
- Wang, F.; Xuan, Z.; Zhen, Z.; Li, K.; Wang, T.; Shi, M. A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework. Energy Convers. Manag. 2020, 212, 112766. [Google Scholar] [CrossRef]
- Suresh, V.; Aksan, F.; Janik, P.; Sikorski, T.; Revathi, B.S. Probabilistic LSTM-Autoencoder Based Hour-Ahead Solar Power Forecasting Model for Intra-Day Electricity Market Participation: A Polish Case Study. IEEE Access 2022, 10, 110628–110638. [Google Scholar] [CrossRef]
- Kumar, S.; Hussain, L.; Banarjee, S.; Reza, M. Energy Load Forecasting using Deep Learning Approach-LSTM and GRU in Spark Cluster. In Proceedings of the 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT), Kolkata, India, 12–13 January 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, J. SolarNet: A sky image-based deep convolutional neural network for intra-hour solar forecasting. Sol. Energy 2020, 204, 71–78. [Google Scholar] [CrossRef]
- Suresh, V.; Janik, P.; Rezmer, J.; Leonowicz, Z. Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm. Energies 2020, 13, 723. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Chu, J.; Guo, P.; Chen, Z. Condition Monitoring of Wind Turbine Gearbox Bearing Based on Deep Learning Model. IEEE Access 2019, 7, 57078–57087. [Google Scholar] [CrossRef]
- Zang, H.; Liu, L.; Sun, L.; Cheng, L.; Wei, Z.; Sun, G. Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations. Renew. Energy 2020, 160, 26–41. [Google Scholar] [CrossRef]
- Park, J.; Kodaira, D.; Agyeman, K.; Jyung, T.; Han, S. Adaptive Power Flow Prediction Based on Machine Learning. Energies 2021, 14, 3842. [Google Scholar] [CrossRef]
- Schäfer, F.; Menke, J.-H.; Braun, M. Prediction of power flow results in time-series-based planning with artificial neural networks and data pre-processing. CIRED—Open Access Proc. J. 2020, 2020, 74–77. [Google Scholar] [CrossRef]
- Song, J.; Zhang, L.; Xue, G.; Ma, Y.; Gao, S.; Jiang, Q. Predicting hourly heating load in a district heating system based on a hybrid CNN-LSTM model. Energy Build. 2021, 243, 110998. [Google Scholar] [CrossRef]
- Agga, A.; Abbou, A.; Labbadi, M.; El Houm, Y.; Ali, I.H.O. CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production. Electr. Power Syst. Res. 2022, 208, 107908. [Google Scholar] [CrossRef]
- Farsi, B.; Amayri, M.; Bouguila, N.; Eicker, U. On Short-Term Load Forecasting Using Machine Learning Techniques and a Novel Parallel Deep LSTM-CNN Approach. IEEE Access 2021, 9, 31191–31212. [Google Scholar] [CrossRef]
- Li, C.; Hu, R.; Hsu, C.-Y.; Han, Y. Short-term Power Load Forecasting based on Feature Fusion of Parallel LSTM-CNN. In Proceedings of the 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 29–31 July 2022; pp. 448–452. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Tulensalo, J.; Seppänen, J.; Ilin, A. An LSTM model for power grid loss prediction. Electr. Power Syst. Res. 2020, 189, 106823. [Google Scholar] [CrossRef]
- Qing, X.; Niu, Y. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy 2018, 148, 461–468. [Google Scholar] [CrossRef]
- Ghosh, A.; Sufian, A.; Sultana, F.; Chakrabarti, A.; De, D. Fundamental Concepts of Convolutional Neural Network. Intell. Syst. Ref. Libr. 2019, 172, 519–567. [Google Scholar] [CrossRef]
- Habeck, C.; Gazes, Y.; Razlighi, Q.; Stern, Y. Cortical thickness and its associations with age, total cognition and education across the adult lifespan. PLoS ONE 2020, 15, e0230298. [Google Scholar] [CrossRef] [Green Version]
- Mishra, B.; Shahi, T.B. Deep learning-based framework for spatiotemporal data fusion: An instance of Landsat 8 and Sentinel 2 NDVI. J. Appl. Remote. Sens. 2021, 15, 034520. [Google Scholar] [CrossRef]
- Plakias, S.; Boutalis, Y.S. Fault detection and identification of rolling element bearings with Attentive Dense CNN. Neurocomputing 2020, 405, 208–217. [Google Scholar] [CrossRef]
- Chen, L.; Xu, G.; Zhang, Q.; Zhang, X. Learning deep representation of imbalanced SCADA data for fault detection of wind turbines. Measurement 2019, 139, 370–379. [Google Scholar] [CrossRef]
- Aksan, F.; Jasiński, M.; Sikorski, T.; Kaczorowska, D.; Rezmer, J.; Suresh, V.; Leonowicz, Z.; Kostyła, P.; Szymańda, J.; Janik, P. Clustering Methods for Power Quality Measurements in Virtual Power Plant. Energies 2021, 14, 5902. [Google Scholar] [CrossRef]
- Lee, T.; Singh, V.P.; Cho, K.H. Deep Learning for Time Series. Water Sci. Technol. Libr. 2021, 99, 107–131. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network. Appl. Energy 2019, 251, 113315. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H. Photovoltaic power forecasting based LSTM-Convolutional Network. Energy 2019, 189, 116225. [Google Scholar] [CrossRef]
- Memarzadeh, G.; Keynia, F. A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets. Energy Convers. Manag. 2020, 213, 112824. [Google Scholar] [CrossRef]
- Rahimilarki, R.; Gao, Z.; Jin, N.; Zhang, A. Time-series Deep Learning Fault Detection with the Application of Wind Turbine Benchmark. IEEE Int. Conf. Ind. Inform. 2019, 1, 1337–1342. [Google Scholar] [CrossRef]
- Lu, X.; Lin, P.; Cheng, S.; Lin, Y.; Chen, Z.; Wu, L.; Zheng, Q. Fault diagnosis for photovoltaic array based on convolutional neural network and electrical time series graph. Energy Convers. Manag. 2019, 196, 950–965. [Google Scholar] [CrossRef]
- Hwang, H.P.-C.; Ku, C.C.-Y.; Chan, J.C.-C. Detection of Malfunctioning Photovoltaic Modules Based on Machine Learning Algorithms. IEEE Access 2021, 9, 37210–37219. [Google Scholar] [CrossRef]
- Jahangir, H.; Golkar, M.A.; Alhameli, F.; Mazouz, A.; Ahmadian, A.; Elkamel, A. Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN. Sustain. Energy Technol. Assessments 2020, 38, 100601. [Google Scholar] [CrossRef]
- Hong, Y.-Y.; Rioflorido, C.L.P.P. A hybrid deep learning-based neural network for 24-h ahead wind power forecasting. Appl. Energy 2019, 250, 530–539. [Google Scholar] [CrossRef]
Topic | Reference | Methodology/Output |
---|---|---|
Prediction on power flow | Brauns et al. [3] | Using LSTM model for vertical power flow forecasting. |
Park et al. [22] | Implementing machine learning for predicting adaptive power flow. | |
Schafer et al. [23] | Proposed ANN with data pre-processing techniques to solve power flow prediction. | |
Our | Proposed CNN-LSTM and LSTM-CNN models for bi-directional power flow prediction. | |
CNN-LSTM and LSTM-CNN for prediction | Song et al. [24] | CNN-LSTM performs excellently in the area of predictive accuracy. |
Agga et al. [25] | CNN-LSTM performs better than the standard ML or individual DL. | |
Farsi et al. [26] | Parallel LSTM-CNN is a good candidate for use as a short-term prediction tool. | |
Li et al. [27] | Parallel LSTM-CNN has a good prediction effect. |
HDL Model | Structure of Layer |
---|---|
LSTM | LSTM layer (neurons: 30) + LSTM layer (neurons: 15) + dense layer (neuron: 1, LeakyRelu activation) |
CNN | conv1D layer (filters: 16, filter size: 3, relu activation) + conv1D layer (filters: 16, filter size: 3, relu activation) + maxpooling1D (polling size: 2, padding: same) + flatten layer+ dense layer (neuron: 1, LeakyRelu activation) |
CNN-LSTM | Conv1D layer (filters: 32, filter size: 3, relu activation) + conv1D layer (filters: 32, filter size: 3, relu activation) + maxpooling1D (polling size: 2, padding:same) + flatten layer + LSTM layer (neurons: 32, relu activation) + LSTM layer (neurons: 10) + dense layer (neuron: 1, LeakyRelu activation) |
LSTM-CNN | LSTM layer (neurons: 32, relu activation) + LSTM layer (neurons: 10) + conv1D layer (filters: 32, filter size: 3, relu activation) + conv1D layer (filters: 32, filter size: 3, relu activation) + maxpooling1D (polling size: 2, padding: same) + flatten layer+ dense layer (neuron: 1, LeakyRelu activation) |
Parameter | Specification |
---|---|
CPU | Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHz 2.71 GHz |
GPU | Intel UHD Graphics 620 |
HDD/SDD | 750 GB |
RAM | 16 GB |
OS | Windows 10 pro 64-bit |
Feed Lines | Power Flow Away from Busbar | Power Flow to Busbar | ||||||
---|---|---|---|---|---|---|---|---|
Number of Data Point | Min [MW] | Mean [MW] | Max [MW] | Number of Data Point | Min [MW] | Mean [MW] | Max [MW] | |
Line 1 | 3287 | 2.378 | 7.472 | 22.189 | 29323 | −104.809 | −41.40 | −2.378 |
Line 2 | 3434 | 2.378 | 7.544 | 23.559 | 29073 | −104.417 | −41.19 | −2.378 |
Line 3 | 11843 | 0.878 | 9.162 | 34.311 | 21422 | −102.501 | −21.030 | −1.095 |
Line 4 | 10574 | 0.878 | 9.536 | 25.230 | 22760 | −115.122 | −25.798 | −1.095 |
Line 5 | 12377 | 0.878 | 5.694 | 21.919 | 19951 | −74.392 | −15.507 | −1.095 |
Line 6 | 15467 | 0.878 | 7.072 | 25.676 | 16918 | −48.257 | −10.656 | −1.095 |
Weather Parameter | Number of Data Point | Min | Mean | Max |
---|---|---|---|---|
Temperature | 34,826 | −9.02 | 11.23 | 37.31 |
Windspeed | 34,826 | 0.00 | 2.59 | 10.39 |
Irradiation | 34,826 | 0.00 | 135.33 | 1310.83 |
Dataset | DL Model | Training Time (Second) | |||||
---|---|---|---|---|---|---|---|
Line 1 | Line 2 | Line 3 | Line 4 | Line 5 | Line 6 | ||
Power data | LSTM | 168.849 | 169.043 | 167.98 | 158.55 | 158.56 | 222.20 |
CNN | 49.522 | 48.855 | 46.316 | 47.85 | 46.11 | 49.22 | |
CNN-LSTM | 102.955 | 99.872 | 103.379 | 109.088 | 95.847 | 105.188 | |
LSTM-CNN | 182.87 | 188.738 | 192.276 | 185.572 | 186.291 | 190.605 | |
Power + Weather data | LSTM | 226.62 | 237.25 | 215.84 | 209.41 | 203.17 | 204.47 |
CNN | 57.76 | 52.95 | 52.60 | 51.76 | 49.07 | 50.24 | |
CNN-LSTM | 129.591 | 146.837 | 121.648 | 134.741 | 131.83 | 119.886 | |
LSTM-CNN | 249.918 | 246.845 | 243.63 | 250.825 | 229.769 | 228.971 |
Metric Evaluation | DL Model | Line Predicted | |||||
---|---|---|---|---|---|---|---|
Line 1 | Line 2 | Line 3 | Line 4 | Line 5 | Line 6 | ||
RMSE (MW) | LSTM | 4.694 | 8.195 | 2.698 | 3.47 | 4.33 | 2.81 |
CNN | 4.823 | 7.299 | 2.931 | 4.16 | 5.51 | 2.94 | |
CNN-LSTM | 5.31 | 6.986 | 3.84 | 3.85 | 4.815 | 2.725 | |
LSTM-CNN | 4.922 | 6.917 | 2.991 | 4.118 | 4.747 | 2.877 | |
MAE (MW) | LSTM | 2.643 | 5.521 | 1.766 | 2.21 | 2.76 | 2.23 |
CNN | 2.412 | 3.318 | 1.811 | 2.81 | 3.97 | 2.36 | |
CNN-LSTM | 3.078 | 2.917 | 2.921 | 2.613 | 3.265 | 2.152 | |
LSTM-CNN | 2.408 | 2.809 | 1.838 | 2.745 | 3.175 | 2.281 | |
R2 | LSTM | 0.977 | 0.927 | 0.982 | 0.98 | 0.82 | 0.92 |
CNN | 0.976 | 0.942 | 0.978 | 0.97 | 0.71 | 0.92 | |
CNN-LSTM | 0.97 | 0.947 | 0.963 | 0.975 | 0.778 | 0.93 | |
LSTM-CNN | 0.975 | 0.948 | 0.978 | 0.971 | 0.785 | 0.92 |
Metric Evaluation | DL Model | Line Predicted | |||||
---|---|---|---|---|---|---|---|
Line 1 | Line 2 | Line 3 | Line 4 | Line 5 | Line 6 | ||
RMSE (MW) | LSTM | 5.897 | 7.475 | 3.075 | 5.026 | 2.335 | 2.589 |
CNN | 5.858 | 7.169 | 2.992 | 4.042 | 2.51 | 3.124 | |
CNN-LSTM | 6.553 | 7.232 | 3.149 | 4.095 | 2.849 | 2.573 | |
LSTM-CNN | 5.649 | 7.056 | 3.242 | 4.746 | 3.026 | 2.98 | |
MAE (MW) | LSTM | 2.936 | 3.735 | 2.074 | 3.056 | 1.552 | 2.021 |
CNN | 2.974 | 3.689 | 2.036 | 2.782 | 1.673 | 2.526 | |
CNN-LSTM | 4.015 | 2.871 | 2.231 | 2.686 | 2.052 | 2.006 | |
LSTM-CNN | 2.733 | 2.868 | 1.985 | 3.23 | 2.468 | 2.416 | |
R2 | LSTM | 0.963 | 0.94 | 0.976 | 0.957 | 0.948 | 0.935 |
CNN | 0.964 | 0.945 | 0.978 | 0.972 | 0.94 | 0.905 | |
CNN-LSTM | 0.955 | 0.944 | 0.975 | 0.971 | 0.922 | 0.935 | |
LSTM-CNN | 0.966 | 0.946 | 0.974 | 0.961 | 0.913 | 0.913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksan, F.; Li, Y.; Suresh, V.; Janik, P. CNN-LSTM vs. LSTM-CNN to Predict Power Flow Direction: A Case Study of the High-Voltage Subnet of Northeast Germany. Sensors 2023, 23, 901. https://doi.org/10.3390/s23020901
Aksan F, Li Y, Suresh V, Janik P. CNN-LSTM vs. LSTM-CNN to Predict Power Flow Direction: A Case Study of the High-Voltage Subnet of Northeast Germany. Sensors. 2023; 23(2):901. https://doi.org/10.3390/s23020901
Chicago/Turabian StyleAksan, Fachrizal, Yang Li, Vishnu Suresh, and Przemysław Janik. 2023. "CNN-LSTM vs. LSTM-CNN to Predict Power Flow Direction: A Case Study of the High-Voltage Subnet of Northeast Germany" Sensors 23, no. 2: 901. https://doi.org/10.3390/s23020901
APA StyleAksan, F., Li, Y., Suresh, V., & Janik, P. (2023). CNN-LSTM vs. LSTM-CNN to Predict Power Flow Direction: A Case Study of the High-Voltage Subnet of Northeast Germany. Sensors, 23(2), 901. https://doi.org/10.3390/s23020901