Development of a Low-Cost Smart Sensor GNSS System for Real-Time Positioning and Orientation for Floating Offshore Wind Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
- ▪
- Fixed antenna test (static and kinematic mode processing);
- ▪
- Test in ocean basin using GNSS simulator (general receiver functionality);
- ▪
- Tests in motion simulator (kinematic mode);
- ▪
- Tests in sea scenario (kinematic mode).
2.2.1. Fixed Antenna
2.2.2. Tests in Ocean Basin with GNSS Simulator
2.2.3. Tests in Motion Simulator
2.2.4. Tests in Sea Scenario
3. Results
3.1. Tests in Static Mode
3.2. Tests in Ocean Basin with GNSS Simulator
- ▪
- 1 HNMG: this simulation presents extreme model turbulence, high wave height (10.5 m), and high wind speed (25 m/s). Due to these conditions, the up component presents tall height variations, and the displacement in the horizontal domain (east and north components) are not especially relevant.
- ▪
- 2 HNMG: in this case, a typical situation is emulated with the lower wind speed (4 m/s), normal turbulence, and low wave height (1 m). In this solution, the displacement is the lowest and in the up component varies slowly.
- ▪
- 3 HNMG: this simulation presents high wind speed (20 m/s), normal turbulence, and low wave height (3.8 m). Due to the high wind speed and the lower turbulence, the displacement is higher in the horizontal domain (east and north).
3.3. Tests in Motion Simulator
3.4. Tests in Sea Scenario
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pachauri, R.K. Energy, Environment and Sustainable Development. In IFAC Proceedings Series; Pergamon Press Inc.: Oxford, UK, 1990; pp. 131–136. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of Renewable Energy Sources in Environmental Protection: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Tee, K.F.; Li, Q.; Wu, X.P. Comparative Study of Onshore and Offshore Wind Characteristics and Wind Energy Potentials: A Case Study for Southeast Coastal Region of China. Sustain. Energy Technol. Assess. 2020, 39, 100711. [Google Scholar] [CrossRef]
- Bonou, A.; Laurent, A.; Olsen, S.I. Life Cycle Assessment of Onshore and Offshore Wind Energy-from Theory to Application. Appl. Energy 2016, 180, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Lynn, P.A. Onshore and Offshore Wind Energy: An Introduction; Wiley: New York, NY, USA, 2012. [Google Scholar]
- REN21. Renewables 2022 Global Status Report (Paris: REN21 Secretariat); REN21: Paris, France, 2022; ISBN 978-3-948393-04-5. [Google Scholar]
- Hywind Scotland Pilot Park Environmental Statement Habitats Regulations Assessment. 2015. Available online: https://marine.gov.scot/ (accessed on 6 October 2022).
- Ciuriuc, A.; Rapha, J.I.; Guanche, R.; Domínguez-García, J.L. Digital Tools for Floating Offshore Wind Turbines (FOWT): A State of the Art. In Energy Reports; Elsevier Ltd.: Amsterdam, The Netherlands, 2022; pp. 1207–1228. [Google Scholar] [CrossRef]
- Wu, L.; Maheshwari, M.; Yang, Y.; Xiao, W. Selection and Characterization of Packaged FBG Sensors for Offshore Applications. Sensors 2018, 18, 3963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, T.-T.; Jia, Z.-G.; Ren, L.; Li, Y.-T.; Ma, G.-D. Design and Experimental Study on FBG-Based Crack Extension Monitoring Sensor. Opt. Fiber Technol. 2022, 71, 102946. [Google Scholar] [CrossRef]
- Angulo, Á.; Tang, J.; Khadimallah, A.; Soua, S.; Mares, C.; Gan, T.H. Acoustic Emission Monitoring of Fatigue Crack Growth in Mooring Chains. Appl. Sci. 2019, 9, 2187. [Google Scholar] [CrossRef] [Green Version]
- Minnebo, J.; Aalberts, P.; Duggal, A. Mooring system monitoring using DGPS. In Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, CA, USA, 8–13 June 2014; American Society of Mechanical Engineers: New York, NY, USA, 2014; p. V01BT01A035. [Google Scholar]
- Li, R.; Zheng, S.; Wang, E.; Chen, J.; Feng, S.; Wang, D.; Dai, L. Advances in BeiDou Navigation Satellite System (BDS) and Satellite Navigation Augmentation Technologies. In Satellite Navigation; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Tavasci, L.; Vecchi, E.; Gandolfi, S. Performance of Atlas GNSS Global Correction Service for High-Accuracy Positioning. J. Surv. Eng. 2021, 147, 5021005. [Google Scholar] [CrossRef]
- Öğütcü, S.; Kalayci, İ. Investigating Precision of Network Based RTK Techniques: Baseline Length Is Concerned. World J. Res. Rev. 2017, 5, 1–3. [Google Scholar]
- Héroux, P.; Kouba, J. GPS precise point positioning using IGS orbit products. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 573–578. [Google Scholar] [CrossRef]
- Goode ME, D.; Edwards, S.J.; Moore, P.; de Jong, K. Time correlation in GNSS precise point positioning. In Proceedings of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, USA, 16–20 September 2013; pp. 1207–1214. [Google Scholar]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef] [Green Version]
- Nie, Z.; Wang, B.; Wang, Z.; He, K. An Offshore Real-Time Precise Point Positioning Technique Based on a Single Set of BeiDou Short-Message Communication Devices. J. Geodesy 2020, 94, 78. [Google Scholar] [CrossRef]
- Choy, S.; Kuckartz, J.; Dempster, A.G.; Rizos, C.; Higgins, M. GNSS Satellite-Based Augmentation Systems for Australia. In GPS Solutions; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Weber, G.; Dettmering, D.; Gebhard, H. Networked Transport of RTCM via Internet Protocol (NTRIP). In International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2005; Volume 128, pp. 60–64. [Google Scholar] [CrossRef]
- Zerr, B.; Jaulin, L.; Creuze, V.; Debese, N.; Quidu, I.; Clement, B.; Billon-Coat, A. (Eds.) Quantitative Monitoring of the Underwater Environment: Results of the International Marine Science and Technology Event MOQESM´14 in Brest, France; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)—Achievements, Prospects and Challenges. In Advances in Space Research; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 1671–1697. [Google Scholar] [CrossRef]
- Guo, F.; Li, X.; Zhang, X.; Wang, J. The Contribution of Multi-GNSS Experiment (MGEX) to Precise Point Positioning. Adv. Space Res. 2017, 59, 2714–2725. [Google Scholar] [CrossRef]
- Prodcuts. Available online: https://igs.org/products (accessed on 3 October 2022).
- Tadokoro, K.; Kinugasa, N.; Kato, T.; Terada, Y.; Matsuhiro, K. A Marine-Buoy-Mounted System for Continuous and Real-Time Measurment of Seafloor Crustal Deformation. Front. Earth Sci. 2020, 8, 123. [Google Scholar] [CrossRef]
- Imano, M.; Kido, M.; Honsho, C.; Ohta, Y.; Takahashi, N.; Fukuda, T.; Ochi, H.; Hino, R. Assessment of Directional Accuracy of GNSS-Acoustic Measurement Using a Slackly Moored Buoy. Prog. Earth Planet. Sci. 2019, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Campos, D.F.; Matos, A.; Pinto, A.M. Multi-Domain Mapping for Offshore Asset Inspection Using an Autonomous Surface Vehicle. In Proceedings of the 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC 2020), Ponta Delgada, Portugal, 15–17 April 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 221–226. [Google Scholar] [CrossRef]
- Hosseinyalamdary, S. Deep Kalman Filter: Simultaneous Multi-Sensor Integration and Modelling; A GNSS/IMU Case Study. Sensors 2018, 18, 1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grotta, A.L.; Campo-Cossío, M.; Puras, A.; Sainz, J.; Fernandez, J.; Basurko, J.; Elorza, I.; Fonseca, N. Mooring Systems Integrity Management Technologies. Offshore Technol. Conf. 2020. [Google Scholar] [CrossRef]
- Xsens. Available online: https://www.xsens.com/software-downloads (accessed on 24 October 2022).
Simulation ID | DLC (Design Load Cases) | Mean Wind Speed at Hub Height (m/s) | Wind Direction (deg) | Turbulence Model and Intensity | Sea Speed (m/s) | Significant Wave Height (m) | Peak Period (m) |
---|---|---|---|---|---|---|---|
1 HNMG | 6.1 | 25.0 | 330.0 | Extreme—0.11 | 0.41 | 10.5 | 14.3 |
2 HNMG | 6.4 | 4.0 | 330.0 | Normal—0.26 | 0.41 | 1.0 | 6.0 |
3 HNMG | 6.4 | 20.0 | 330.0 | Normal—0.12 | 0.41 | 3.8 | 9.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revert Calabuig, N.; Laarossi, I.; Álvarez González, A.; Pérez Nuñez, A.; González Pérez, L.; García-Minguillán, A.C. Development of a Low-Cost Smart Sensor GNSS System for Real-Time Positioning and Orientation for Floating Offshore Wind Platform. Sensors 2023, 23, 925. https://doi.org/10.3390/s23020925
Revert Calabuig N, Laarossi I, Álvarez González A, Pérez Nuñez A, González Pérez L, García-Minguillán AC. Development of a Low-Cost Smart Sensor GNSS System for Real-Time Positioning and Orientation for Floating Offshore Wind Platform. Sensors. 2023; 23(2):925. https://doi.org/10.3390/s23020925
Chicago/Turabian StyleRevert Calabuig, Neus, Ismail Laarossi, Antonio Álvarez González, Alejandro Pérez Nuñez, Laura González Pérez, and Abraham Casas García-Minguillán. 2023. "Development of a Low-Cost Smart Sensor GNSS System for Real-Time Positioning and Orientation for Floating Offshore Wind Platform" Sensors 23, no. 2: 925. https://doi.org/10.3390/s23020925
APA StyleRevert Calabuig, N., Laarossi, I., Álvarez González, A., Pérez Nuñez, A., González Pérez, L., & García-Minguillán, A. C. (2023). Development of a Low-Cost Smart Sensor GNSS System for Real-Time Positioning and Orientation for Floating Offshore Wind Platform. Sensors, 23(2), 925. https://doi.org/10.3390/s23020925