Intraclass Clustering-Based CNN Approach for Detection of Malignant Melanoma
Abstract
:1. Introduction
2. Related Literature
2.1. Convolutional Neural Networks
2.2. Support Vector Machines
2.3. Decision Trees
3. Methodology
3.1. Dataset
3.2. Base Model
3.3. Clustering Overview
3.4. Dimensionality Reduction
3.5. Medical Prognosis Based Clustering
3.6. K-Means
3.7. Hierarchical Clustering
3.8. TSNE Clustering
4. Results
4.1. Clustering Categories
4.2. Performance Evaluation
4.2.1. AUC Scores
4.2.2. QDA & LDA
4.2.3. ROC-AUC Scores
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cazzato, G.; Colagrande, A.; Ingravallo, G.; Lettini, T.; Filoni, A.; Ambrogio, F.; Bonamonte, D.; Dellino, M.; Lupo, C.; Casatta, N.; et al. PRAME Immuno-Expression in Cutaneous Sebaceous Carcinoma: A Single Institutional Experience. J. Clin. Med. 2022, 11, 6936. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, B.K. How sun exposure causes skin cancer: An epidemiological perspective. In Prevention of Skin Cancer; Springer: Berlin/Heidelberg, Germany, 2004; pp. 89–116. [Google Scholar]
- Souhami, R.; Tobias, J.S. Cancer and Its Management; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Greenspan, H.; Van Ginneken, B.; Summers, R.M. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 2016, 35, 1153–1159. [Google Scholar] [CrossRef]
- Conoci, S.; Rundo, F.; Petralta, S.; Battiato, S. Advanced skin lesion discrimination pipeline for early melanoma cancer diagnosis towards PoC devices. In Proceedings of the 2017 European Conference on Circuit Theory and Design (ECCTD), Catania, Italy, 4–6 September 2017; pp. 1–4. [Google Scholar]
- Alquran, H.; Qasmieh, I.A.; Alqudah, A.M.; Alhammouri, S.; Alawneh, E.; Abughazaleh, A.; Hasayen, F. The melanoma skin cancer detection and classification using support vector machine. In Proceedings of the 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Aqaba, Jordan, 11–13 October 2017; pp. 1–5. [Google Scholar]
- Leiter, U.; Eigentler, T.; Garbe, C. Epidemiology of skin cancer. In Sunlight, Vitamin D and Skin Cancer; Springer: Berlin/Heidelberg, Germany, 2014; pp. 120–140. [Google Scholar]
- Kavitha, J.; Suruliandi, A. Texture and color feature extraction for classification of melanoma using SVM. In Proceedings of the 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE’16), Kovilpatti, India, 7–9 January 2016; pp. 1–6. [Google Scholar]
- Sboner, A.; Eccher, C.; Blanzieri, E.; Bauer, P.; Cristofolini, M.; Zumiani, G.; Forti, S. A multiple classifier system for early melanoma diagnosis. Artif. Intell. Med. 2003, 27, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, D.; Berenguer, V.; Soriano, A.; Sánchez, B. A decision support system for the diagnosis of melanoma: A comparative approach. Expert Syst. Appl. 2011, 38, 15217–15223. [Google Scholar] [CrossRef]
- Amanullah, M.; Selvakumar, V.; Jyot, A.; Purohit, N.; Shitharth, S.; Fahlevi, M. CNN based Prediction Analysis for Web Phishing Prevention. In Proceedings of the 2022 International Conference on Edge Computing and Applications (ICECAA), Tamilnadu, India, 13–15 October 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Maron, R.C.; Weichenthal, M.; Utikal, J.S.; Hekler, A.; Berking, C.; Hauschild, A.; Enk, A.H.; Haferkamp, S.; Klode, J.; Schadendorf, D.; et al. Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. Eur. J. Cancer 2019, 119, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haenssle, H.A.; Fink, C.; Schneiderbauer, R.; Toberer, F.; Buhl, T.; Blum, A.; Kalloo, A.; Hassen, A.B.H.; Thomas, L.; Enk, A.; et al. Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 2018, 29, 1836–1842. [Google Scholar] [CrossRef] [PubMed]
- Ha, Q.; Liu, B.; Liu, F. Identifying melanoma images using efficientnet ensemble: Winning solution to the siim-isic melanoma classification challenge. arXiv 2020, arXiv:2010.05351. [Google Scholar]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, S.; Kimura, A. A SVM-based diagnosis of melanoma using only useful image features. In Proceedings of the 2018 International Workshop on Advanced Image Technology (IWAIT), Chiang Mai, Thailand, 7–9 January 2018; pp. 1–4. [Google Scholar]
- Waheed, Z.; Waheed, A.; Zafar, M.; Riaz, F. An efficient machine learning approach for the detection of melanoma using dermoscopic images. In Proceedings of the 2017 International Conference on Communication, Computing and Digital Systems (C-CODE), Islamabad, Pakistan, 8–9 March 2017; pp. 316–319. [Google Scholar]
- Babu, G.N.K.; Peter, V.J. Skin cancer detection using support vector machine with histogram of oriented gradients features. ICTACT J. Soft Comput. 2021, 11, 2301–2305. [Google Scholar] [CrossRef]
- İlkin, S.; Gençtürk, T.H.; Kaya Gülağız, F.; Özcan, H.; Altuncu, M.A.; Şahin, S. hybSVM: Bacterial colony optimization algorithm based SVM for malignant melanoma detection. Eng. Sci. Technol. Int. J. 2021, 24, 1059–1071. [Google Scholar] [CrossRef]
- Kamboj, A. A color-based approach for melanoma skin cancer detection. In Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, 15–17 December 2018; pp. 508–513. [Google Scholar]
- Pugazhenthi, V.; Naik, S.K.; Joshi, A.D.; Manerkar, S.S.; Nagvekar, V.U.; Naik, K.P.; Palekar, C.G.; Sagar, K. Skin disease detection and classification. Int. J. Adv. Eng. Res. Sci. (IJAERS) 2019, 6, 396–400. [Google Scholar]
- Arasi, M.A.; El-Horbaty, E.S.M.; El-Sayed, A. Classification of dermoscopy images using naive bayesian and decision tree techniques. In Proceedings of the 2018 1st Annual International Conference on Information and Sciences (AiCIS), Fallujah, Iraq, 20–21 November 2018; pp. 7–12. [Google Scholar]
- Bakos, R.M.; Blumetti, T.P.; Roldán-Marín, R.; Salerni, G. Noninvasive imaging tools in the diagnosis and treatment of skin cancers. Am. J. Clin. Dermatol. 2018, 19, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soenksen, L.R.; Kassis, T.; Conover, S.T.; Marti-Fuster, B.; Birkenfeld, J.S.; Tucker-Schwartz, J.; Naseem, A.; Stavert, R.R.; Kim, C.C.; Senna, M.M.; et al. Using deep learning for dermatologist-level detection of suspicious pigmented skin lesions from wide-field images. Sci. Transl. Med. 2021, 13, eabb3652. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, J.; Hinton, G.E.; Roweis, S.; Salakhutdinov, R.R. Neighbourhood components analysis. Adv. Neural Inf. Process. Syst. 2004, 17, 513–520. [Google Scholar]
Class | Target | Sample Size |
---|---|---|
Melanoma | 6 | 5099 |
Melanocytic Nevus | 7 | 18,059 |
Basal Cell Carcinoma | 1 | 3319 |
Benign Keratosis Lesion | 2 | 2844 |
Actinic Keratosis | 0 | 867 |
Squamous Cell Carcinoma | 4 | 628 |
Vascular Lesion | 5 | 253 |
Dermatofibroma | 3 | 239 |
Not Classified | 8 | 26,699 |
Model | Description | AUC Score |
---|---|---|
Base | Base model | 0.9949 |
T_17 | Retrained on binary classification | 0.9935 |
T_18 | Retrained on Melanoma, Suspicious, Not Suspicious | 0.9945 |
T_19 | Retrained on Melanoma, Suspicious, Not Suspicious A and B | 0.9945 |
T_20 | Retrained on the 4 classes, using PCA and k-means | 0.9941 |
T_21 | Retrained on the 4 classes, using TSNE and k-means | 0.9951 |
T_22 | Retrained on 5 classes, using PCA and k-means, lr = | 0.9952 |
T_23 | T_22, lr = | 0.9939 |
T_24 | T_22, lr = | 0.9960 |
T_25 | T_22, lr = | 0.9962 |
T_26 | T_22, lr = | 0.9960 |
T_27 | Retrained on 5 classes using TSNE directly | 0.9950 |
T_28 | Retrained on the 4 classes, using TSNE and k-means | 0.9948 |
T_29 | Retrained on 7 classes using TSNE directly | 0.9951 |
Model | Description | ROC-AUC |
---|---|---|
Base | Base model | 0.9943 |
E_1 | Retrained on 5 classes, using PCA 95% TSNE and k-means | 0.9946 |
E_2 | Retrained on 4 classes, using NDA and k-means | 0.9947 |
E_3 | Retrained on 5 classes, using NDA and k-means | 0.9945 |
E_4 | Retrained on binary classification | 0.9941 |
E_5 | Retrained on 4 classes, using TSNE k-means | 0.9946 |
E_6 | Retrained on 5 classes, using TSNE k-means | 0.9947 |
E_7 | Retrained on 5 classes, using PCA and k-means | 0.9948 |
E_8 | Retrained on 5 classes, using TSNE | 0.9946 |
E_9 | Retrained on 7 classes, using TSNE | 0.9948 |
Model | Description | ROC-AUC | Precision | Recall | F1 Score |
---|---|---|---|---|---|
Base | Base model | 0.9943 | 0.9421 | 0.9125 | 0.9271 |
E_7 | Retrained on 5 classes, using PCA and k-means | 0.9948 | 0.9519 | 0.9076 | 0.9292 |
E_9 | Retrained on 7 classes, using TSNE | 0.9948 | 0.9448 | 0.9102 | 0.9272 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandy, A.D.; Spyridis, Y.; Villarini, B.; Argyriou, V. Intraclass Clustering-Based CNN Approach for Detection of Malignant Melanoma. Sensors 2023, 23, 926. https://doi.org/10.3390/s23020926
Bandy AD, Spyridis Y, Villarini B, Argyriou V. Intraclass Clustering-Based CNN Approach for Detection of Malignant Melanoma. Sensors. 2023; 23(2):926. https://doi.org/10.3390/s23020926
Chicago/Turabian StyleBandy, Adrian D., Yannis Spyridis, Barbara Villarini, and Vasileios Argyriou. 2023. "Intraclass Clustering-Based CNN Approach for Detection of Malignant Melanoma" Sensors 23, no. 2: 926. https://doi.org/10.3390/s23020926
APA StyleBandy, A. D., Spyridis, Y., Villarini, B., & Argyriou, V. (2023). Intraclass Clustering-Based CNN Approach for Detection of Malignant Melanoma. Sensors, 23(2), 926. https://doi.org/10.3390/s23020926