Sub-Nanometer Acoustic Vibration Sensing Using a Tapered-Tip Optical Fiber Microcantilever
Abstract
:1. Introduction
2. Materials and Methods
2.1. Working Principle
2.2. Fiber Fabrication
2.3. Measurement Setup
2.4. Eigenfrequency Analysis
3. Experimental Results
3.1. Measurements with a Tapered-Tip Diameter of 1.5 µm
3.2. Measurements with a Tapered-Tip Diameter of 1.8 µm
3.3. Measurements with Non-Tapered Fibers
3.4. Effect of Fiber to Fiber and Fiber to Piezo Distances
4. Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, Y.; Lu, L.; Cheng, J.; Liu, J.; Chen, Y.; Yu, J. Acoustic-based sensing and applications: A survey. Comput. Netw. 2020, 181, 107447. [Google Scholar] [CrossRef]
- Frederick, W. Substation insulator failure prevention by ultrasonic corona detection. IEEE Trans. Ind. Appl. 1972, 1, 82–83. [Google Scholar] [CrossRef]
- Tomberg, T.; Vainio, M.; Hieta, T.; Halonen, L. Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy. Sci. Rep. 2018, 8, 1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, L.; Bai, W.; Chen, F.; Zhao, X.; Yu, F.; Diebold, G.J. Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating. Proc. Natl. Acad. Sci. USA 2017, 114, 7246–7249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Sampaolo, A.; Dong, L.; Patimisco, P.; Liu, X.; Zheng, H.; Yin, X.; Ma, W.; Zhang, L.; Yin, W. Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing. Appl. Phys. Lett. 2015, 107, 111104. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Dong, L.; Sampaolo, A.; Wu, H.; Patimisco, P.; Yin, X.; Ma, W.; Zhang, L.; Yin, W.; Spagnolo, V. Single-tube on-beam quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2016, 41, 978–981. [Google Scholar] [CrossRef]
- Leak Detectors Sense Commercial Opportunities. Available online: https://optics.org/news/9/5/29/ (accessed on 28 May 2018).
- Wang, J.; Wang, H.; Liu, X. A portable laser photoacoustic methane sensor based on FPGA. Sensors 2016, 16, 1551. [Google Scholar] [CrossRef]
- Tombez, L.; Zhang, E.; Orcutt, J.; Kamlapurkar, S.; Green, W. Methane absorption spectroscopy on a silicon photonic chip. Optica 2017, 4, 1322–1325. [Google Scholar] [CrossRef]
- Wang, F.; Jia, S.; Wang, Y.; Tang, Z. Recent developments in modulation spectroscopy for methane detection based on tunable diode laser. Appl. Sci. 2019, 9, 2816. [Google Scholar] [CrossRef] [Green Version]
- Adegboye, M.A.; Fung, W.-K.; Karnik, A. Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches. Sensors 2019, 19, 2548. [Google Scholar] [CrossRef]
- Bell, A.G. Upon the production and reproduction of sound by light. J. Soc. Telegr. Eng. 1880, 9, 404–426. [Google Scholar] [CrossRef]
- Miklós, A.; Hess, P.; Bozóki, Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 2001, 72, 1937–1955. [Google Scholar] [CrossRef] [Green Version]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2012, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- Korposh, S.; James, S.W.; Lee, S.-W.; Tatam, R.P. Tapered optical fibre sensors: Current trends and future perspectives. Sensors 2019, 19, 2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Li, J.; Zhang, G.; Shi, Y. PZT nanoactive fiber composites for acoustic emission detection. Adv. Mater. 2011, 23, 3965–3969. [Google Scholar] [CrossRef]
- Xu, B.; Li, Y.; Sun, M.; Zhang, Z.-W.; Dong, X.-Y.; Zhang, Z.-X.; Jin, S.-Z. Acoustic vibration sensor based on nonadiabatic tapered fibers. Opt. Lett. 2012, 37, 4768–4770. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lu, P.; Qin, Z.; Harris, J.; Baset, F.; Bhardwaj, V.R.; Bao, X. Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer. Opt. Express 2013, 21, 3031–3042. [Google Scholar] [CrossRef]
- Li, T.; Guo, J.; Tan, Y.; Zhou, Z. Recent advances and tendency in fiber Bragg grating-based vibration sensor: A review. IEEE Sens. J. 2020, 20, 12074–12087. [Google Scholar] [CrossRef]
- Kamata, M.; Obara, M.; Gattass, R.R.; Cerami, L.R.; Mazur, E. Optical vibration sensor fabricated by femtosecond laser micromachining. Appl. Phys. Lett. 2005, 87, 051106. [Google Scholar] [CrossRef]
- Villatoro, J.; Antonio-Lopez, E.; Schülzgen, A.; Amezcua-Correa, R. Miniature multicore optical fiber vibration sensor. Opt. Lett. 2017, 42, 2022–2025. [Google Scholar] [CrossRef]
- Zhou, S.; Iannuzzi, D. A fiber-tip photoacoustic sensor for in situ trace gas detection. Rev. Sci. Instrum. 2019, 90, 023102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Zheng, Y.; Xiao, H.; Liang, D.; Zhang, Y.; Yu, Y.; Du, C.; Ruan, S. Optical Fiber Probe Microcantilever Sensor Based on Fabry–Perot Interferometer. Sensors 2022, 22, 5748. [Google Scholar] [CrossRef] [PubMed]
- Raji, Y.; Lin, H.; Ibrahim, S.; Mokhtar, M.; Yusoff, Z. Intensity-modulated abrupt tapered fiber Mach-Zehnder interferometer for the simultaneous sensing of temperature and curvature. Opt. Laser Technol. 2016, 86, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Iannuzzi, D.; Deladi, S.; Gadgil, V.; Sanders, R.; Schreuders, H.; Elwenspoek, M. Monolithic fiber-top sensor for critical environments and standard applications. Appl. Phys. Lett. 2006, 88, 053501. [Google Scholar] [CrossRef] [Green Version]
- Iannuzzi, D.; Slaman, M.; Rector, J.; Schreuders, H.; Deladi, S.; Elwenspoek, M. A fiber-top cantilever for hydrogen detection. Sens. Actuators B Chem. 2007, 121, 706–708. [Google Scholar] [CrossRef]
- Roy, R.K.; Bezboruah, T. Non-contact method based on intensity modulation of light for measurement of vibration of a thin cantilever beam. IET Sci. Meas. Technol. 2019, 13, 746–754. [Google Scholar] [CrossRef]
- Lu, P.; Xu, Y.; Baset, F.; Bao, X.; Bhardwaj, R. In-line fiber microcantilever vibration sensor. Appl. Phys. Lett. 2013, 103, 211113. [Google Scholar] [CrossRef]
- Jia, Z.; Zhao, X.; Fan, W.; Gao, H.; Liu, Q.; Yong, Z.; Liu, Y.; Yang, K. A two-dimensional cantilever beam vibration sensor based on fiber Bragg Grating. Opt. Fiber Technol. 2021, 61, 102447. [Google Scholar] [CrossRef]
- Lu, C.; Nikbakht, H.; Erdolu, M.Y.; van Someren, B.; Akca, B.I. Tapered tip optical fibers for measuring ultra-small refractive index changes with record high sensitivity. Opt. Lett. 2022, 47, 6281–6284. [Google Scholar] [CrossRef]
- Kbashi, H.J. Fabrication of submicron-diameter and taper fibers using chemical etching. J. Mater. Sci. Technol. 2012, 28, 308–312. [Google Scholar] [CrossRef]
- Dello Russo, S.; Giglio, M.; Sampaolo, A.; Patimisco, P.; Menduni, G.; Wu, H.; Dong, L.; Passaro, V.M.; Spagnolo, V. Acoustic coupling between resonator tubes in quartz-enhanced photoacoustic spectrophones employing a large prong spacing tuning fork. Sensors 2019, 19, 4109. [Google Scholar] [CrossRef] [PubMed]
Tip Diameter (µm) | Eigenfrequency (kHz) | ||||
---|---|---|---|---|---|
1.5 | 6.4 | 8.5 | 10.9 | 13.5 | 16.5 |
19.7 | 23.2 | 27.2 | 31.2 | 35.9 | |
40.2 | 45.5 | ||||
1.8 | 5.9 | 7.7 | 10 | 12.4 | 15.0 |
18.1 | 21.3 | 24.8 | 28.6 | 32.6 | |
37.2 | 41.6 | 46.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.; Dashtabi, M.M.; Nikbakht, H.; Khoshmehr, M.T.; Akca, B.I. Sub-Nanometer Acoustic Vibration Sensing Using a Tapered-Tip Optical Fiber Microcantilever. Sensors 2023, 23, 924. https://doi.org/10.3390/s23020924
Lu C, Dashtabi MM, Nikbakht H, Khoshmehr MT, Akca BI. Sub-Nanometer Acoustic Vibration Sensing Using a Tapered-Tip Optical Fiber Microcantilever. Sensors. 2023; 23(2):924. https://doi.org/10.3390/s23020924
Chicago/Turabian StyleLu, Chunyu, Mahdi Mozdoor Dashtabi, Hamed Nikbakht, Mohammad Talebi Khoshmehr, and B. Imran Akca. 2023. "Sub-Nanometer Acoustic Vibration Sensing Using a Tapered-Tip Optical Fiber Microcantilever" Sensors 23, no. 2: 924. https://doi.org/10.3390/s23020924
APA StyleLu, C., Dashtabi, M. M., Nikbakht, H., Khoshmehr, M. T., & Akca, B. I. (2023). Sub-Nanometer Acoustic Vibration Sensing Using a Tapered-Tip Optical Fiber Microcantilever. Sensors, 23(2), 924. https://doi.org/10.3390/s23020924