Federated and Transfer Learning Methods for the Classification of Melanoma and Nonmelanoma Skin Cancers: A Prospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Objectives (ROs)
- To emphasize the latest research trends in TL and FL methods for detecting melanoma and nonmelanoma cancer;
- To explore the existing approaches and present an SLR of these approaches based on classification performances;
- To explore different types of available datasets for melanoma and nonmelanoma diagnosis;
- To propose a taxonomy to emphasize effective frameworks for melanoma diagnosis;
- To explore the state-of-the-art research trends, opportunities, and challenges for other researchers in diagnosing melanoma.
2.2. Research Questions (RQs)
2.3. Search Strategy
2.4. Study Inclusion and Exclusion Criteria
2.5. Screening and Selection Criteria
2.6. Search Results
3. Methods for the Detection of Melanoma and Nonmelanoma Skin Cancer (RQ1)
3.1. Fully Convolutional Network (FCN)-Based Methods
3.2. Hybrid Methods
3.3. Ensemble Methods
3.4. Federated Learning
4. Performance Evaluation of Methods to Determine the Efficacy of Various Classification Algorithms for Melanoma and Nonmelanoma Cancer Using Clinical and Dermoscopic Images (RQ2)
4.1. Analyzing Performance on a Single Dataset
4.2. Performance Evaluation on Multiple Datasets
4.3. Performance Evaluation on Combined Datasets
4.4. Performance Evaluation on a Smartphone Camera-Based Collected Dataset
Ref. | Dataset | Model | TPR | TNR | PPV | ACC | AUC |
---|---|---|---|---|---|---|---|
[18] | ISIC 2019 | SLDCNet, FrCN | 99%, | 99.36% | NM | 99.92% | NM |
[69] | ISIC 2018 | MaOEA-IS with FL | NM | NM | NM | 91% | 88.7% |
[87] | ISIC 2018 | CKDNet | 96.7% | 90.4% | NM | 93.4% | NM |
[88] | ISIC 2017 | CKDNet | 92.5% | 70% | NM | 88.1% | 90.5% |
[97] | ISIC 2019 | GoogleNet and transfer learning | 79.8% | 97% | 80.3% | 94.92% | NM |
[98] | ISIC 2019 | ResNet-101, NASNet-Large | 88.46% | 88.24% | NM | 88.33% | NM |
[99] | ISIC 2019 | Adaptive ensemble CNN with FL | 91% | NM | 90% | 89% | NM |
[100] | ISIC 2018 | Ensemble GoogLeNet, Inceptionv3 | 45% | 97.2% | 67.5% | 88.2% | 91.3% |
[101] | ISIC 2018 | ∇N-Net architecture | NM | NM | NM | 87% | NM |
[102] | ISIC 2018 | Hybrid-CNN with DSNet | 86% | NM | 85% | NM | 97% |
[103] | ISIC 2017 | FrCN | 78.9% | 96% | NM | 90.7% | NM |
[104] | ISIC 2017 | Mutual bootstrapping DCNN | 72.7% | 91.5% | NM | 87.8% | 90.3% |
[105] | ISIC 2017 | Ensemble CNN | NM | NM | NM | NM | 92.1% |
[106] | ISIC 2017 | Inception-V3 | 94.5% | 98% | 95% | 94.8% | 98% |
[107] | ISIC 2017 | DenseNet-161, ResNet-50 | 60.7% | 89.7% | NM | NM | 80.0% |
[108] | ISIC 2017 | FC-DenseNet | 83.8% | 98.6% | NM | 93.71% | NM |
[109] | ISIC 2017 | Lightweight DSNet | 83.6% | 93.9% | NM | 92.8% | NM |
5. Available Datasets for the Evaluation of Classification Methods for Melanoma and Nonmelanoma Skin Cancer (RQ3)
5.1. Public Datasets
5.2. Private Datasets
5.3. Non-Listed/Non-Published Datasets
6. Taxonomy for Melanoma Diagnosis
7. Results and Discussion
8. Research Gap and Future Direction for Melanoma and Nonmelanoma Skin Cancer Classification
8.1. Challenges in Transfer Learning-Based Classification Methods
8.1.1. Dataset Inconsistency
8.1.2. The Lack of Lesion Images from Dark-Skinned People in the Datasets
8.1.3. ABCDE Rule of Dermoscopy
8.1.4. The Limited Number of Images in Datasets
8.1.5. Patient’s Clinical Metadata and Case History
8.1.6. Unbalanced Datasets
8.2. Potential Future Opportunities and Work
8.2.1. Miscellaneous Datasets
8.2.2. Generative Adversarial Networks
8.2.3. Data Fusion Algorithm Development
8.2.4. Federated Learning-Based Framework Development
8.2.5. Data Augmentation Techniques
8.2.6. Color Constancy Algorithm Development
8.2.7. A Balanced Skin Lesion Dataset
8.2.8. CAD System Design Based on the ABCDE Medical Algorithm and Transfer Learning
8.2.9. Internet of Things (IoT) and Transfer Learning
8.3. Limitations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naeem, A.; Tayyaba, A.; Makhmoor, F.; Rizwan, A.N.; Seung, W.L. SCDNet: A Deep Learning-Based Framework for the Multiclassification of Skin Cancer Using Dermoscopy Images. Sensors 2022, 22, 5652. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Causes of Skin Cancer. Available online: https://www.cancer.org/content/dam/CRC/PDF/Public/8893.00.pdf (accessed on 26 September 2023).
- World Health Organization. WHO Reports on Cancer: Setting Priorities, Investing Wisely, and Providing Care for All; World Health Organization: Geneva, Switzerland, 2020; Available online: https://apps.who.int/iris/handle/10665/330745 (accessed on 5 April 2023).
- Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, S. Global burden of cancers attributable to infections in: A synthetic analysis. Lancet Glob. Health 2016, 4, e609–e616. [Google Scholar] [CrossRef] [PubMed]
- American Skin Cancer Organization. Skin Cancer Information. Available online: https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/ (accessed on 5 April 2023).
- Akram, N.; Adnan, S.; Asif, M.; Imran, S.M.A.; Yasir, M.N.; Naqvi, R.A.; Hussain, D. Exploiting the Multiscale Information Fusion Capabilities for Aiding the Leukemia Diagnosis through White Blood Cells Segmentation. IEEE Access 2022, 10, 48747–48760. [Google Scholar] [CrossRef]
- Cives, M.; Mannavola, F.; Lospalluti, L.; Sergi, M.C.; Cazzato, G.; Filoni, E.; Cavallo, F.; Giudice, G.; Stucci, L.S.; Porta, C.; et al. Non-melanoma skin cancers: Biological and clinical features. Int. J. Mol. Sci. 2020, 21, 5394. [Google Scholar] [CrossRef]
- Wang, S.; Tang, L.; Lin, J.; Shen, Z.; Yao, Y.; Wang, W.; Liu, Y. ABCB5 promotes melanoma metastasis through enhancing NF-κB p65 protein stability. Biochem. Biophys. Res. Commun. 2017, 492, 18–26. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590. [Google Scholar] [CrossRef]
- Zhou, Y.; Koyuncu, C.; Lu, C.; Grobholz, R.; Katz, I.; Madabhushi, A.; Janowczyk, A. Multi-site cross-organ calibrated deep learning (MuSClD): Automated diagnosis of non-melanoma skin cancer. Med. Image Anal. 2023, 84, 102702. [Google Scholar] [CrossRef]
- Zafar, M.; Sharif, M.I.; Sharif, M.I.; Kadry, S.; Bukhari, S.A.C.; Rauf, H.T. Skin Lesion Analysis and Cancer Detection Based on Machine/Deep Learning Techniques: A Comprehensive Survey. Life 2023, 13, 146. [Google Scholar] [CrossRef]
- Bindhu, A.; Thanammal, K.K. Segmentation of skin cancer using Fuzzy U-network via deep learning. Meas. Sens. 2023, 26, 100677. [Google Scholar] [CrossRef]
- Prouteau, A.; André, C. Canine melanomas as models for human melanomas: Clinical, histological, and genetic comparison. Genes 2019, 10, 501. [Google Scholar] [CrossRef]
- Miller, K.D.; Goding Sauer, A.; Ortiz, A.P.; Fedewa, S.A.; Pinheiro, P.S.; Tortolero-Luna, G.; Siegel, R.L. Cancer statistics for Hispanics/Latinos. CA Cancer J. Clin. 2018, 68, 425–445. [Google Scholar] [CrossRef] [PubMed]
- Nami, N.; Giannini, E.; Burroni, M.; Fimiani, M.; Rubegni, P. Teledermatology: State-of-the-art and future perspectives. Expert Rev. Dermatol. 2012, 7, 1–3. [Google Scholar] [CrossRef]
- Afza, F.; Sharif, M.; Khan, M.A.; Tariq, U.; Yong, H.S.; Cha, J. Multiclass Skin Lesion Classification Using Hybrid Deep Features Selection and Extreme Learning Machine. Sensors 2022, 22, 799. [Google Scholar] [CrossRef] [PubMed]
- Varma, P.B.S.; Paturu, S.; Mishra, S.; Rao, B.S.; Kumar, P.M.; Krishna, N.V. SLDCNet: Skin lesion detection and classification using full resolution convolutional network-based deep learning CNN with transfer learning. Expert Syst. 2022, 39, e12944. [Google Scholar] [CrossRef]
- Naeem, A.; Farooq, M.S.; Khelifi, A.; Abid, A. Malignant melanoma classification using deep learning: Datasets, performance measurements, challenges and opportunities. IEEE Access 2020, 8, 110575–110597. [Google Scholar] [CrossRef]
- Fogel, A.L.; Kvedar, J.C. Artificial intelligence powers digital medicine. npj Digit. Med. 2018, 1, 5. [Google Scholar] [CrossRef]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Huang, H.-Y.; Hsiao, Y.-P.; Mukundan, A.; Tsao, Y.-M.; Chang, W.-Y.; Wang, H.-C. Classification of Skin Cancer Using Novel Hyperspectral Imaging Engineering via YOLOv5. J. Clin. Med. 2023, 12, 1134. [Google Scholar] [CrossRef]
- Abdelhalim, I.S.A.; Mohamed, M.F.; Mahdy, Y.B. Data augmentation for skin lesion using self-attention-based progressive generative adversarial network. Expert Syst. Appl. 2021, 165, 1139. [Google Scholar] [CrossRef]
- Diwan, T.; Shukla, R.; Ghuse, E.; Tembhurne, J.V. Model hybridization & learning rate annealing for skin cancer detection. Multimed. Tools Appl. 2023, 82, 2369–2392. [Google Scholar]
- Innani, S.; Dutande, P.; Baheti, B.; Baid, U.; Talbar, S. Deep Learning Based Novel Cascaded Approach for Skin Lesion Analysis. arXiv 2023, arXiv:2301.06226. [Google Scholar]
- Inthiyaz, S.; Altahan, B.R.; Ahammad, S.H.; Rajesh, V.; Kalangi, R.R.; Smirani, L.K.; Hossain, M.A.; Rashed, A.N.Z. Skin disease detection using deep learning. Adv. Eng. Softw. 2023, 175, 103361. [Google Scholar] [CrossRef]
- Tahir, M.; Ahmad, N.; Hassaan, M.; Jawad, T.; Rizwan, A.N.; Seung, W.L. DSCC_Net: Multi-Classification Deep Learning Models for Diagnosing of Skin Cancer Using Dermoscopic Images. Cancers 2023, 15, 2179. [Google Scholar] [CrossRef]
- Kitchenham, B. Procedures for Performing Systematic Reviews; Keele University: Keele, UK, 2004; Volume 33, pp. 1–26. [Google Scholar]
- Karki, S.; Kulkarni, P.; Stranieri, A. Melanoma classification using EfficientNets and Ensemble of models with different input resolutions. In Proceedings of the 2021 Australasian Computer Science Week Multiconference, Dunedin, New Zealand, 1–5 February 2021; pp. 1–5. [Google Scholar]
- Malik, H.; Farooq, M.S.; Khelifi, A.; Abid, A.; Qureshi, J.N.; Hussain, M. A Comparison of Transfer Learning Performance versus Health Experts in Disease Diagnosis from Medical Imaging. IEEE Access 2020, 8, 139367–139386. [Google Scholar] [CrossRef]
- Bdair, T.; Navab, N.; Albarqouni, S. FedPerl: Semi-supervised Peer Learning for Skin Lesion Classification. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 27 September–1 October 2021; pp. 336–346. [Google Scholar]
- Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. Systematic mapping studies in software engineering. In Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering (EASE), Bari, Italy, 26–27 June 2008; Volume 12, pp. 1–10. [Google Scholar]
- Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software engineering—A systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15. [Google Scholar] [CrossRef]
- Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.A. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 2017, 36, 994–1004. [Google Scholar] [CrossRef]
- Al-Masni, M.A.; Kim, D.H.; Kim, T.S. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Comput. Methods Programs Biomed. 2020, 190, 05351. [Google Scholar] [CrossRef]
- Jayapriya, K.; Jacob, I.J. Hybrid fully convolutional networks based skin lesion segmentation and melanoma detection using deep feature. Int. J. Imaging Syst. Technol. 2020, 30, 348–357. [Google Scholar] [CrossRef]
- Khan, M.A.; Zhang, Y.D.; Sharif, M.; Akram, T. Pixels to classes: Intelligent learning framework for multiclass skin lesion localization and classification. Comput. Electr. Eng. 2021, 90, 106956. [Google Scholar] [CrossRef]
- Al-masni, M.A.; Al-antari, M.A.; Park, H.M.; Park, N.H.; Kim, T. A Deep Learning Model Integrating FrCN and Residual Convolutional Networks for Skin Lesion Segmentation and Classification. In Proceedings of the 2019 IEEE Eurasia Conference on Biomedical Engineering, Healthcare, and Sustainability (ECBIOS), Okinawa, Japan, 31 May–3 June 2019; pp. 95–98. [Google Scholar] [CrossRef]
- Kassem, M.A.; Hosny, K.M.; Fouad, M.M. Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning. IEEE Access 2020, 8, 114822–114832. [Google Scholar] [CrossRef]
- Gavrilov, D.A.; Melerzanov, A.V.; Shchelkunov, N.N.; Zakirov, E.I. Use of neural network-based deep learning techniques for the diagnostics of skin diseases. Biomed. Eng. 2019, 52, 348–352. [Google Scholar] [CrossRef]
- Miglani, V.; Bhatia, M.P.S. Skin Lesion Classification: A Transfer Learning Approach Using EfficientNets. In International Conference on Advanced Machine Learning Technologies and Applications; Springer: Singapore, 2020; pp. 315–324. [Google Scholar]
- Hosny, K.M.; Kassem, M.A.; Fouad, M.M. Classification of Skin Lesions into Seven Classes Using Transfer Learning with AlexNet. J. Digit. Imaging 2020, 33, 1325–1334. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Majtner, T.; Yildirim-Yayilgan, S.; Hardeberg, J.Y. Optimised deep learning features for improved melanoma detection. Multimed. Tools Appl. 2019, 78, 11883–11903. [Google Scholar] [CrossRef]
- Aldwgeri, A.; Abubacker, N.F. Ensemble of deep convolutional neural network for skin lesion classification in dermoscopy images. In Proceedings of the 6th International Visual Informatics Conference, IVIC 2019, Bangi, Malaysia, 19–21 November 2019; pp. 214–226. [Google Scholar]
- Mahbod, A.; Schaefer, G.; Wang, C.; Ecker, R.; Ellinge, I. Skin lesion classification using hybrid deep neural networks. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019. [Google Scholar]
- Namozov, A.; Cho, Y.I. Convolutional neural network algorithm with parameterized activation function for melanoma classication. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 17–19 October 2018; p. 417. [Google Scholar]
- Hosny, K.M.; Kassem, M.A.; Foaud, M.M. Skin cancer classification using deep learning and transfer learning. In Proceedings of the 2018 9th Cairo International Biomedical Engineering Conference (CIBEC), Cairo, Egypt, 20–22 December 2018; pp. 90–93. [Google Scholar]
- Bisla, D.; Choromanska, A.; Berman, R.S.; Stein, J.A.; Polsky, D. Towards automated melanoma detection with deep learning: Data purication and augmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 2720–2728. [Google Scholar]
- Maron, R.C.; Haggenmüller, S.; von Kalle, C.; Utikal, J.S.; Meier, F.; Gellrich, F.F.; Hauschild, A.; French, L.E.; Schlaak, M.; Ghoreschi, K.; et al. Robustness of convolutional neural networks in recognition of pigmented skin lesions. Eur. J. Cancer 2021, 145, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Rivera, D.; Grijalva, F.; Acurio, B.A.A.; Álvarez, R. Towards a Mobile and Fast Melanoma Detection System. In Proceedings of the 2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Guayaquil, Ecuador, 11–15 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Khan, M.A.; Javed, M.Y.; Sharif, M.; Saba, T.; Rehman, A. Multi-Model Deep Neural Network-Based Features Extraction and Optimal Selection Approach for Skin Lesion Classification. In Proceedings of the 2019 International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia, 3–4 April 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Khan, M.A.; Akram, T.; Zhang, Y.D.; Sharif, M. Attributes-based skin lesion detection and recognition: A mask RCNN and transfer learning-based deep learning framework. Pattern Recognit. Lett. 2021, 143, 58–66. [Google Scholar] [CrossRef]
- Georgakopoulos, S.V.; Kottari, K.; Delibasis, K.; Plagianakos, V.P.; Maglogiannis, I. Detection of Malignant Melanomas in Dermoscopic Images Using Convolutional Neural Network with Transfer Learning. In Engineering Applications of Neural Networks (EANN); Boracchi, G., Iliadis, L., Jayne, C., Likas, A., Eds.; Springer: Cham, Switzerland, 2017; Volume 744. [Google Scholar]
- Kulhalli, R.; Savadikar, C.; Garware, B. A hierarchical approach to skin lesion classification. In Proceedings of the ACM India Joint International Conference on Data Science and Management of Data, Kolkata, India, 3–5 January 2019. [Google Scholar]
- Karri, M.; Annavarapu, C.S.R.; Acharya, U.R. Skin lesion segmentation using two-phase cross-domain transfer learning framework. Comput. Methods Programs Biomed. 2023, 231, 107408. [Google Scholar] [CrossRef]
- Yu, Z.; Jiang, F.; Zhou, F.; He, X.; Ni, D.; Chen, S.; Wang, T.; Lei, B. Convolutional descriptors aggregation via cross-net for skin lesion recognition. Appl. Soft Comput. 2020, 92, 106281. [Google Scholar] [CrossRef]
- Pal, A.; Ray, S.; Garain, U. Skin disease identification from dermoscopy images using deep convolutional neural network. arXiv 2018, arXiv:180709163. [Google Scholar]
- Alizadeh, S.M.; Mahloojifar, A. Automatic skin cancer detection in dermoscopy images by combining convolutional neural networks and texture features. Int. J. Imaging Syst. Technol. 2021, 31, 695–707. [Google Scholar] [CrossRef]
- Milton, M.A.A. Automated skin lesion classification using ensemble of deep neural networks in ISIC 2018: Skin lesion analysis towards melanoma detection challenge. arXiv 2019, arXiv:1901.10802. [Google Scholar]
- Chaturvedi, S.S.; Tembhurne, J.V.; Diwan, T. A multiclass skin Cancer classification using deep convolutional neural networks. Multimed. Tools Appl. 2020, 79, 28477–28498. [Google Scholar] [CrossRef]
- Mahbod, A.; Schaefer, G.; Ellinger, I.; Ecker, R.; Pitiot, A.; Wang, C. Fusing fine-tuned deep features for skin lesion classification. Comput. Med. Imaging Graph. 2019, 71, 19–29. [Google Scholar] [CrossRef]
- Le, D.N.T.; Le, H.X.; Ngo, L.T.; Ngo, H.T. Transfer learning with class-weighted and focal loss function for automatic skin cancer classification. arXiv 2020, arXiv:2009.05977. [Google Scholar]
- Mahbod, A.; Schaefer, G.; Wang, C.; Ecker, R.; Dorffner, G.; Ellinger, I. Investigating and exploiting image resolution for transfer learning-based skin lesion classification. arXiv 2020, arXiv:2006.14715. [Google Scholar]
- Nyíri, T.; Kiss, A. Novel Ensembling Methods for Dermatological Image Classification. In TPNC 2018: Theory and Practice of Natural Computing; Fagan, D., Martín-Vide, C., O’Neill, M., Vega-Rodríguez, M., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 11324. [Google Scholar] [CrossRef]
- Bi, L.; Kim, J.; Ahn, E.; Feng, D. Automatic skin lesion analysis using large-scale dermoscopy images and deep residual networks. arXiv 2017, arXiv:1703.04197. [Google Scholar]
- Wei, L.; Ding, K.; Hu, H. Automatic skin cancer detection in dermoscopy images based on ensemble lightweight deep learning network. IEEE Access 2020, 8, 99633–99647. [Google Scholar] [CrossRef]
- Harangi, B. Skin lesion classification with ensembles of deep convolutional neural networks. J. Biomed. Inform. 2018, 86, 25–32. [Google Scholar] [CrossRef]
- Lan, Y.; Xie, L.; Cai, X.; Wang, L. A many-objective evolutionary algorithm based on an integrated strategy for skin cancer detection. KSII Trans. Internet Inf. Syst. 2022, 16, 80–96. [Google Scholar]
- Hossen, N.; Panneerselvam, V.; Koundal, D.; Ahmed, K.; Bui, F.M.; Ibrahim, S.M. Federated Machine Learning for Detection of Skin Diseases and Enhancement of Internet of Medical Things (IoMT) Security. IEEE J. Biomed. Health Inform. 2022, 27, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Agbley, B.L.Y.; Li, J.; Haq, A.U.; Bankas, E.K.; Ahmad, S.; Agyemang, I.O.; Kulevome, D.; Ndiaye, W.D.; Cobbinah, B.; Latipova, S. Multimodal Melanoma Detection with Federated Learning. In Proceedings of the 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 17–19 December 2021; pp. 238–244. [Google Scholar]
- Hashmani, M.A.; Jameel, S.M.; Rizvi, S.S.H.; Shukla, S. An adaptive federated machine learning-based intelligent system for skin disease detection: A step toward an intelligent dermoscopy device. Appl. Sci. 2021, 11, 2145. [Google Scholar] [CrossRef]
- Bdair, T.; Navab, N.; Albarqouni, S. Peer Learning for Skin Lesion Classification. arXiv 2021, arXiv:2103.03703. [Google Scholar]
- Mukherjee, S.; Adhikari, A.; Roy, M. Malignant melanoma classification using a cross-platform dataset with deep learning CNN architecture. In Recent Trends in Signal and Image Processing; Springer: Singapore, 2019; pp. 31–41. [Google Scholar]
- Qiu, Y.; Cai, J.; Qin, X.; Zhang, J. Inferring Skin Lesion Segmentation with Fully Connected CRFs Based on Multiple Deep Convolutional Neural Networks. IEEE Access 2020, 8, 144246–144258. [Google Scholar] [CrossRef]
- Codella, N.C.F.; Nguyen, Q.-B.; Pankanti, S.; Gutman, D.A.; Helba, B.; Halpern, A.C.; Smith, J.R. Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J. Res. Dev. 2017, 61, 5:1–5:15. [Google Scholar] [CrossRef]
- Gonzalez-Diaz, I. Dermaknet: Incorporating the knowledge of dermatologists to convolutional neural networks for skin lesion diagnosis. IEEE J. Biomed. Health Inform. 2018, 23, 547–559. [Google Scholar] [CrossRef]
- Menegola, A.; Fornaciali, M.; Pires, R.; Bittencourt, F.V.; Avila, S.; Valle, E. Knowledge transfer for melanoma screening with deep learning. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, Australia, 18–21 April 2017; pp. 297–300. [Google Scholar]
- Al-masni, M.A.; Al-antari, M.A.; Choi, M.-T.; Han, S.-M.; Kim, T.-S. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput. Methods Programs Biomed. 2018, 162, 221–231. [Google Scholar] [CrossRef]
- Adegun, A.A.; Viriri, S. FCN-Based DenseNet Framework for Automated Detection and Classification of Skin Lesions in Dermoscopy Images. IEEE Access 2020, 8, 150377–150396. [Google Scholar] [CrossRef]
- Nida, N.; Irtaza, A.; Javed, A.; Yousaf, M.H.; Mahmood, M.T. Melanoma lesion detection and segmentation using deep region-based convolutional neural network and fuzzy C-means clustering. Int. J. Med. Inf. 2019, 124, 37–48. [Google Scholar] [CrossRef]
- Kaymak, R.; Kaymak, C.; Ucar, A. Skin lesion segmentation using fully convolutional networks: A comparative experimental study. Expert Syst. Appl. 2020, 161, 113742. [Google Scholar] [CrossRef]
- Shan, P.; Wang, Y.; Fu, C.; Song, W.; Chen, J. Automatic skin lesion segmentation based on FC-DPN. Comput. Biol. Med. 2020, 123, 103762. [Google Scholar] [CrossRef] [PubMed]
- Bakheet, S.; Al-Hamadi, A. Computer-Aided Diagnosis of Malignant Melanoma Using Gabor-Based Entropic Features and Multilevel Neural Networks. Diagnostics 2020, 10, 822. [Google Scholar] [CrossRef] [PubMed]
- Balaji, M.S.P.; Saravanan, S.; Chandrasekar, M.; Rajkumar, G.; Kamalraj, S. Analysis of basic neural network types for automated skin cancer classification using Firefly optimization method. J. Ambient. Intell. Humaniz. Comput. 2020, 12, 7181–7194. [Google Scholar] [CrossRef]
- Warsi, F.; Khanam, R.; Kamya, S.; Suárez-Araujo, C.P. An effcient 3D color-texture feature and neural network technique for melanoma detection. Inform. Med. Unlocked 2019, 17, 100176. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J.; Xia, Y.; Shen, C. A mutual bootstrapping model for automated skin lesion segmentation and classification. IEEE Trans. Med. Imaging 2020, 39, 2482–2493. [Google Scholar] [CrossRef]
- Barata, C.; Celebi, M.E.; Marques, J.S. Explainable Skin Lesion Diagnosis Using Taxonomies. Pattern Recognit. 2020, 110, 107413. [Google Scholar] [CrossRef]
- Hosny, K.M.; Kassem, M.A.; Foaud, M.M. Skin melanoma classification using ROI and data augmentation with deep convolutional neural networks. Multimed. Tools Appl. 2020, 79, 24029. [Google Scholar] [CrossRef]
- Filali, Y.; Khoukhi, H.E.; Sabri, M.A.; Aarab, A. Efficient fusion of handcrafted and pre-trained CNNs features to classify melanoma skin cancer. Multimed. Tools Appl. 2020, 79, 31219–31238. [Google Scholar] [CrossRef]
- Hasan, M.K.; Elahi, M.T.E.; Alam, M.A.; Jawad, M.T.; Martí, R. DermoExpert: Skin lesion classification using a hybrid convolutional neural network through segmentation, transfer learning, and augmentation. Inform. Med. Unlocked 2022, 28, 100819. [Google Scholar] [CrossRef]
- Saba, T.; Khan, M.A.; Rehman, A.; Marie-Sainte, S.L. Region extraction and classification of skin cancer: A heterogeneous framework of deep CNN features fusion and reduction. J. Med. Syst. 2019, 43, 289. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, A.; Gul, N.; Anjum, M.A.; Nisar, M.W.; Azam, F.; Bukhari, S.A.C. Integrated design of deep features fusion for localization and classi_cation of skin cancer. Pattern Recognit. Lett. 2020, 131, 63–70. [Google Scholar] [CrossRef]
- Hameed, N.; Shabut, A.M.; Ghosh, M.K.; Hossain, M. Multiclass multi-level classification algorithm for skin lesions classification using machine learning techniques. Expert Syst. Appl. 2020, 141, 112961. [Google Scholar] [CrossRef]
- Zhang, N.; Cai, Y.-X.; Wang, Y.-Y.; Tian, Y.-T.; Wang, X.-L.; Badami, B. Skin cancer diagnosis based on optimized convolutional neural network. Artif. Intell. Med. 2020, 102, 101756. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, A.G.; Krohling, R.A. The impact of patient clinical information on automated skin cancer detection. Comput. Biol. Med. 2020, 116, 103545. [Google Scholar] [CrossRef] [PubMed]
- De Rodrigues, A.D.; Ivo, R.F.; Satapathy, S.C.; Wang, S.; Hemanth, J.; Filho, P.P.R. A new approach for classification skin lesion based on transfer learning, deep learning, and IoT system. Pattern Recognit. Lett. 2020, 136, 8–15. [Google Scholar] [CrossRef]
- Chaturvedi, S.S.; Gupta, K.; Prasad, P.S. Skin Lesion Analyser: An Efficient Seven-Way Multiclass Skin Cancer Classification Using MobileNet. In AMLTA 2020: Advanced Machine Learning Technologies and Applications; Hassanien, A., Bhatnagar, R., Darwish, A., Eds.; Advances in Intelligent Systems and, Computing; Springer: Singapore, 2020; Volume 1141. [Google Scholar] [CrossRef]
- Nahata, H.; Singh, S.P. Deep learning solutions for skin cancer detection and diagnosis. In Machine Learning with Health Care Perspective (Learning and Analytics in Intelligent Systems); Jain, V., Chatterjee, J., Eds.; Springer: Cham, Switzerland, 2020; Volume 13. [Google Scholar]
- Hosny, K.M.; Kassem, M.A.; Foaud, M.M. Classification of skin lesions using transfer learning and augmentation with Alex-net. PLoS ONE 2019, 14, e0217293. [Google Scholar] [CrossRef]
- Polat, K.; Koc, K.O. Detection of skin diseases from dermoscopy images using the combination of convolutional neural network and one-versus-all. J. Artif. Intell. Syst. 2020, 2, 80–97. [Google Scholar] [CrossRef]
- Xie, F.; Yang, J.; Liu, J.; Jiang, Z.; Zheng, Y.; Wang, Y. Skin lesion segmentation using high-resolution convolutional neural network. Comput. Methods Programs Biomed. 2020, 186, 105241. [Google Scholar] [CrossRef]
- Bajwa, M.N.; Muta, K.; Malik, M.I.; Siddiqui, S.A.; Braun, S.A.; Homey, B.; Dengel, A.; Ahmed, S. Computer-aided diagnosis of skin diseases using deep neural networks. Appl. Sci. 2020, 10, 2488. [Google Scholar] [CrossRef]
- Khan, M.A.; Sharif, M.; Akram, T.; Bukhari, S.A.C.; Nayak, R.S. Developed Newton-Raphson based deep features selection framework for skin lesion recognition. Pattern Recognit. Lett. 2020, 129, 293. [Google Scholar] [CrossRef]
- Albert, B.A. Deep learning from limited training data: Novel segmentation and ensemble algorithms applied to automatic melanoma diagnosis. IEEE Access 2020, 8, 31254–31269. [Google Scholar] [CrossRef]
- El-Khatib, H.; Popescu, D.; Ichim, L. Deep learning_based methods for automatic diagnosis of skin lesions. Sensors 2020, 20, 1753. [Google Scholar] [CrossRef] [PubMed]
- Carcagnì, P.; Leo, M.; Cuna, A.; Mazzeo, P.L.; Spagnolo, P.; Celeste, G.; Distante, C. Classification of Skin Lesions by Combining Multilevel Learnings in a DenseNet Architecture. In International Conference on Image Analysis and Processing; Springer: Cham, Switzerland, 2019; pp. 335–344. [Google Scholar] [CrossRef]
- Jin, Q.; Cui, H.; Sun, C.; Meng, Z.; Su, R. Cascade knowledge diffusion network for skin lesion diagnosis and segmentation. Appl. Soft Comput. 2021, 99, 106881. [Google Scholar] [CrossRef]
- Almaraz-Damian, J.-A.; Ponomaryov, V.; Sadovnychiy, S.; Castillejos-Fernandez, H. Melanoma and nevus skin lesion classification using handcraft and deep learning feature fusion via mutual information measures. Entropy 2020, 22, 484. [Google Scholar] [CrossRef] [PubMed]
- Ratul, M.A.R.; Mozaffari, M.H.; Lee, W.; Parimbelli, E. Skin Lesions Classification Using Deep Learning Based on Dilated Convolution. bioRxiv 2020, 860700. [Google Scholar] [CrossRef]
- Alom, M.Z.; Aspiras, T.; Taha, T.M.; Asari, V.K. Skin cancer segmentation and classification with improved deep convolutional neural network. In SPIE 11318, Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications; SPIE: Bellingham, DC, USA, 2020; p. 1131814. [Google Scholar]
- Adegun, A.; Viriri, S. Deep convolutional network-based framework for melanoma lesion detection and segmentation. In Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems, Auckland, New Zealand, 10–14 February 2020. [Google Scholar]
- Sies, K.; Winkler, J.K.; Fink, C.; Bardehle, F.; Toberer, F.; Buhl, T.; Enk, A.; Blum, A.; Rosenberger, A.; Haenssle, H.A.A. Past and present of computer-assisted dermoscopic diagnosis: Performance of a conventional image analyzer versus a convolutional neural network in a prospective data set of 1981 skin lesions. Eur. J. Cancer 2020, 135, 39–46. [Google Scholar] [CrossRef]
- Harangi, B.; Baran, A.; Hajdu, A. Assisted deep learning framework for multiclass skin lesion classification considering binary classification support. Biomed. Signal Process. Control 2020, 62, 102041. [Google Scholar] [CrossRef]
- Hasan, M.K.; Dahal, L.; Samarakoon, P.N.; Tushar, F.I.; Martí, R. DSNet: Automatic dermoscopic skin lesion segmentation. Comput. Biol. Med. 2020, 120, 103738. [Google Scholar] [CrossRef]
- Raza, R.; Zulfiqar, F.; Tariq, S.; Anwar, G.B.; Sargano, A.B.; Habib, Z. Melanoma Classification from Dermoscopy Images Using Ensemble of Convolutional Neural Networks. Mathematics 2022, 10, 26. [Google Scholar] [CrossRef]
- Indraswari, R.; Rokhana, R.; Herulambang, W. Melanoma image classification based on MobileNetV2 network. Procedia Comput. Sci. 2022, 197, 198–207. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Wang, J.; Yang, A.; Ma, Z.; Zhang, Z.; Hua, D. Review on security of federated learning and its application in healthcare. Future Gener. Comput. Syst. 2023, 144, 271–290. [Google Scholar] [CrossRef]
- Yan, R.; Qu, L.; Wei, Q.; Huang, S.-C.; Shen, L.; Rubin, D.L.; Xing, L.; Zhou, Y. Label-efficient self-supervised federated learning for tackling data heterogeneity in medical imaging. IEEE Trans. Med. Imaging 2023, 42, 1932–1943. [Google Scholar] [CrossRef]
- Liu, L.; Mou, L.; Zhu, X.X.; Mandal, M. Automatic skin lesion classification based on mid-level feature learning. Comput. Med. Imaging Graph. 2020, 84, 101765. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Anees, T.; Naqvi, R.A.; Loh, W.K. A Comprehensive Analysis of Recent Deep and Federated-Learning-Based Methodologies for Brain Tumor Diagnosis. J. Pers. Med. 2022, 12, 275. [Google Scholar] [CrossRef]
- Goyal, M.; Knackstedt, T.; Yan, S.; Hassanpour, S. Artificial intelligence-based image classification methods for diagnosis of skin cancer: Challenges and opportunities. Comput. Biol. Med. 2020, 127, 104065. [Google Scholar] [CrossRef] [PubMed]
- Saeed, H.; Malik, H.; Bashir, U.; Ahmad, A.; Riaz, S.; Ilyas, M.; Bukhari, W.A.; Khan, M.I.A. Blockchain technology in healthcare: A systematic review. PLoS ONE 2022, 17, e0266462. [Google Scholar] [CrossRef]
- Sharif, S.M.A.; Naqvi, R.A.; Biswas, M.; Loh, W.K. Deep Perceptual Enhancement for Medical Image Analysis. IEEE J. Biomed. Health Inform. 2022, 26, 4826–4836. [Google Scholar] [CrossRef]
- Riaz, S.; Khan, A.H.; Haroon, M.; Latif, S.; Bhatti, S. Big data security and privacy: Current challenges and future research perspective in cloud environment. In Proceedings of the 2020 International Conference on Information Management and Technology (ICIMTech), Bandung, Indonesia, 13–14 August 2020; pp. 977–982. [Google Scholar]
- Ciążyńska, M.; Kamińska-Winciorek, G.; Lange, D.; Lewandowski, B.; Reich, A.; Sławińska, M.; Pabianek, M.; Szczepaniak, K.; Hankiewicz, A.; Ułańska, M.; et al. The incidence and clinical analysis of non-melanoma skin cancer. Sci. Rep. 2021, 11, 4337. [Google Scholar] [CrossRef]
- Kato, J.; Horimoto, K.; Sato, S.; Minowa, T.; Uhara, H. Dermoscopy of melanoma and non-melanoma skin cancers. Front. Med. 2019, 6, 180. [Google Scholar] [CrossRef]
- Rehman, A.U.; Jiang, A.; Rehman, A.; Paul, A. Weighted based trustworthiness ranking in social Internet of things by using soft set theory. In Proceedings of the 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 6–9 December 2019; pp. 1644–1648. [Google Scholar]
No. | Research Question | Motivation |
RQ1 | What types of the best available methods are used for the detection of melanoma and nonmelanoma skin cancers from clinical and dermoscopic images? | To explore different types of transfer learning- and federated learning-based approaches that are used for melanoma and nonmelanoma skin cancer diagnosis from clinical and dermoscopic images. |
RQ2 | What types of metrics are used to determine the efficacy of various classification algorithms for melanoma and nonmelanoma skin cancer diagnosis from clinical and dermoscopic images? | To identify the performance metrics of federated- and transfer learning-based algorithms like true positive rate (TPR), true negative rate (TNR), precision (PPV), accuracy (ACC), and area under the curve (AUC). |
RQ3 | What types of datasets are available for the detection of melanoma and non-melanoma skin cancer? What is the credibility and reliability of these datasets? | To explore the availability of publicly available datasets as well as non-listed, private datasets. |
Ref | Training Algorithms | Archi. | Datasets | Image Modality |
---|---|---|---|---|
[17] | Hybrid deep CNN | DCNN | HAM10000, ISIC 2018 | Dermoscopy |
[18] | SLDCNet, FrCN | DCNN | ISIC 2019 | Dermoscopy |
[31] | FedPerl | FL | Multisource combined dataset | Dermoscopy |
[42] | MaOEA-IS (federated learning) | FL | ISIC 2018 | Dermoscopy |
[44] | AlexNet + LDA | CNN | ISIC Archive | Dermoscopy |
[45] | ResNet-18, VGG16, AlexNet | DNN | ISIC 2016, ISIC 2017 | Dermoscopy |
[47] | LeNet + Adaptive linear piecewise function | CNN | ISIC 2018 | Dermoscopy |
[48] | AlexNet | DNN | PH2 | Dermoscopy |
[66] | DenseNet | DCNN | ISIC 2017, HAM10000 | Dermoscopy |
[67] | MobileNet V1, DenseNet-121 | DCNN | ISIC 2016 | Dermoscopy |
[68] | CNN | DCNN | Dermo fit, MEDNODE | Dermoscopy |
[69] | MaOEA | FSDM | Ham 10000 | Dermoscopy |
[70] | FL + CNN | CNN | Custom image dataset | Dermoscopy |
[71] | FL + CNN | FL | Multisource dataset | Dermoscopy |
[72] | Adaptive ensemble CNN with FL | FL | ISIC 2019 | Dermoscopy |
[74] | Ensemble DCCN | DCNN | ISIC 2017, PH2 | Dermoscopy |
[75] | Derma Net | CNN | ISIC 2017 | Dermoscopy |
[76] | VGG-M, VGG-16 | DNN | ISIC 2016, Atlas | Dermoscopy |
[77] | Ensemble CNN | CNN | HAM 10000 | Dermoscopy |
[78] | CNN | CNN | ISIC 2017, ISIC 2016, PH2 | Dermoscopy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, S.; Naeem, A.; Malik, H.; Naqvi, R.A.; Loh, W.-K. Federated and Transfer Learning Methods for the Classification of Melanoma and Nonmelanoma Skin Cancers: A Prospective Study. Sensors 2023, 23, 8457. https://doi.org/10.3390/s23208457
Riaz S, Naeem A, Malik H, Naqvi RA, Loh W-K. Federated and Transfer Learning Methods for the Classification of Melanoma and Nonmelanoma Skin Cancers: A Prospective Study. Sensors. 2023; 23(20):8457. https://doi.org/10.3390/s23208457
Chicago/Turabian StyleRiaz, Shafia, Ahmad Naeem, Hassaan Malik, Rizwan Ali Naqvi, and Woong-Kee Loh. 2023. "Federated and Transfer Learning Methods for the Classification of Melanoma and Nonmelanoma Skin Cancers: A Prospective Study" Sensors 23, no. 20: 8457. https://doi.org/10.3390/s23208457
APA StyleRiaz, S., Naeem, A., Malik, H., Naqvi, R. A., & Loh, W. -K. (2023). Federated and Transfer Learning Methods for the Classification of Melanoma and Nonmelanoma Skin Cancers: A Prospective Study. Sensors, 23(20), 8457. https://doi.org/10.3390/s23208457