Time-Lapse GPR Measurements to Monitor Resin Injection in Fractures of Marble Blocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Marble Specimens
2.2. GPR Measurements
2.3. Data Processing
3. Results
3.1. Laboratory Measurements
3.2. Field Measurements
4. Discussion
4.1. Laboratory Measurements
4.2. Field Measurements
4.3. Automatic Analysis
5. Conclusions
- -
- When the amplitude variation is lower than 10%, no resin is filling the fracture and it shows an unsuccessful injection.
- -
- When the amplitude variation is in the range 10% to 20%, it shows the partial filling of the fracture, i.e., resin could only reduce the fracture thickness without filling it completely.
- -
- The amplitude variations higher than 20% show a successful injection, meaning that the resin has fully sealed the fracture.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashmole, I.; Motloung, M. Dimension Stone: The Latest Trends in Exploration and Production Technology; The Southern African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2008; Volume 5, pp. 35–70. [Google Scholar]
- Egesi, N.; Tse, C.A. Dimension stone: Exploration, evaluation and exploitation in southwest parts of Oban Massif Southeastern Nigeria. J. Geol. Min. Res. 2011, 3, 114–122. [Google Scholar]
- Jug, J.; Grabar, K.; Strelec, S.; Dodigović, F. Investigation of dimension stone on the Island Brač—Geophysical approach to rock mass quality assessment. Geosciences 2020, 10, 112. [Google Scholar] [CrossRef]
- Sousa, L.; Barabasch, J.; Stein, K.-J.; Siegesmund, S. Characterization and quality assessment of granitic building stone deposits: A case study of two different Portuguese granites. Eng. Geol. 2017, 221, 29–40. [Google Scholar] [CrossRef]
- Torkan, M.; Janiszewski, M.; Uotinen, L.; Baghbanan, A.; Rinne, M. Photogrammetric method to determine physical aperture and roughness of a rock fracture. Sensors 2022, 22, 4165. [Google Scholar] [CrossRef]
- Hojat, A. A review of the last decade of Ground Penetrating Radar contribution to the marble quarrying industry (Invited Talk). In Proceedings of the 5th Asia Pacific Meeting on Near Surface Geoscience & Engineering, Taipei, Taiwan, 6–9 March 2023. [Google Scholar] [CrossRef]
- Zanzi, L.; Hojat, A.; Ranjbar, H.; Karimi-Nasab, S.; Azadi, A.; Arosio, D. GPR measurements to detect major discontinuities at Cheshmeh-Shirdoosh limestone quarry, Iran. Bull. Eng. Geol. Environ. 2019, 78, 743–752. [Google Scholar] [CrossRef]
- Smith, M.R. (Ed.) Stone: Building Stone, Rock Fill and Armourstone in Construction; Engineering Geology Special Publication; Geological Society: London, UK, 1999. [Google Scholar]
- Yarahmadi, R.; Bagherpour, R.; Taherian, S.-G.; Sousa, L.M.O. A new quality factor for the building stone industry: A case study of stone blocks, slabs, and tiles. Bull. Eng. Geol. Environ. 2019, 78, 533–542. [Google Scholar] [CrossRef]
- Hojat, A.; Izadi-Yazdanabadi, M.; Karimi-Nasab, S.; Arosio, D.; Zanzi, L. GPR method as an efficient NDT tool to characterize carbonate rocks during different production stages. In Proceedings of the EAGE-GSM 2nd Asia Pacific Meeting on Near Surface Geoscience & Engineering, Kuala Lumpur, Malaysia, 22–26 April 2019. [Google Scholar] [CrossRef]
- Grandjean, G.; Gourry, J.-C. GPR data processing for 3D fracture mapping in a marble quarry (Thassos, Greece). J. Appl. Geophys. 1996, 36, 19–30. [Google Scholar] [CrossRef]
- Lualdi, M.; Zanzi, L. 2D and 3D experiments to explore the potential benefit of GPR investigations in planning the mining activity of a limestone quarry. In Proceedings of the 10th International Conference on Ground Penetrating Radar GPR2004, Delft, The Netherlands, 21–24 June 2004; pp. 613–616. [Google Scholar]
- Arosio, D.; Hojat, A.; Munda, S.; Zanzi, L. Non-destructive root mapping: Exploring the potential of GPR. In Proceedings of the 3rd Asia Pacific Meeting on Near Surface Geoscience & Engineering, Online, 2–5 November 2020. [Google Scholar] [CrossRef]
- Hojat, A.; Ranjbar, H.; Karimi-Nasab, S.; Zanzi, L. Laboratory tests and field surveys to explore the optimum frequency for GPR surveys in detecting qanats. Pure Appl. Geophys. 2023, 180, 2389–2405. [Google Scholar] [CrossRef]
- Arosio, D.; Hojat, A.; Munda, S.; Zanzi, L. High-frequency GPR investigations in San Vigilio Cathedral, Trento. In Proceedings of the 24th European Meeting of Environmental and Engineering Geophysics, Porto, Portugal, 9–12 September 2018. [Google Scholar] [CrossRef]
- Binda, L.; Lualdi, M.; Saisi, A.; Zanzi, L. Radar investigation as a complementary tool for the diagnosis of historic masonry buildings. Int. J. Mater. Struct. Integr. 2011, 5, 1–25. [Google Scholar] [CrossRef]
- Barraca, N.; Almeida, M.; Varum, H.; Almeida, F.; Matias, M.S. A Case study of the use of GPR for rehabilitation of a classified art deco building: The InovaDomus House. J. Appl. Geophys. 2016, 127, 1–13. [Google Scholar] [CrossRef]
- Arosio, D. Rock fracture characterization with GPR by means of deterministic deconvolution. J. Appl. Geophys. 2016, 126, 27–34. [Google Scholar] [CrossRef]
- Arosio, D.; Zanzi, L.; Longoni, L.; Papini, M. GPR investigations of rock fractures: Considerations on thin beds. In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2013; Environment and Engineering Geophysical Society: Denver, CO, USA, 2013; pp. 523–532. [Google Scholar] [CrossRef]
- Arosio, D.; Zanzi, L.; Longoni, L.; Papini, M. Fracture thickness from GPR measurements. In Proceedings of the 8th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Florence, Italy, 7–10 July 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Izadi-Yazdanabadi, M.; Hojat, A.; Zanzi, L.; Karimi-Nasab, S.; Arosio, D. Analytical models and laboratory measurements to explore the potential of GPR for quality control of marble block repair through resin injections. Appl. Sci. 2022, 12, 987. [Google Scholar] [CrossRef]
- Arosio, D.; Munda, S.; Zanzi, L. Quality control of stone blocks during quarrying activities. In Proceedings of the 14th International Conference on Ground Penetrating Radar, Shanghai, China, 4–8 June 2012; pp. 828–832. [Google Scholar] [CrossRef]
- Grégoire, C.; Hollender, F. Discontinuity characterization by the inversion of the spectral content of Ground Penetrating Radar (GPR) reflections—Application of the Jonscher model. Geophysics 2004, 69, 1414–1424. [Google Scholar] [CrossRef]
- Markovaara-Koivisto, M.; Hokkanen, T.; Huuskonen-Snicker, E. The effect of fracture aperture and filling material on GPR signal. Bull. Eng. Geol. Environ. 2014, 73, 815–823. [Google Scholar] [CrossRef]
- Sambuelli, L.; Calzoni, C. Estimation of thin fracture aperture in a marble block by GPR sounding. Boll. Geof. Teor. Appl. 2010, 51, 239–252. [Google Scholar]
- Shakas, A.; Linde, N. Effective modeling of ground penetrating radar in fractured media using analytic solutions for propagation, thin-bed interaction and dipolar scattering. J. Appl. Geophys. 2015, 116, 206–214. [Google Scholar] [CrossRef]
- Orlando, L.; Slob, E. Using multicomponent GPR to monitor cracks in a historical building. J. Appl. Geophys. 2009, 67, 327–334. [Google Scholar] [CrossRef]
- Ortega-Ramírez, J.; Bano, M.; Larrea-López, L.L.; Robles-Camacho, J.; Ávila-Luna, P.; Villa-Alvarado, L.A. GPR measurements to identify cracks and textural arrangements in the altar wall of the 16th-century Santa Maria Huiramangaro Church, Michoacán, Mexico. Surf. Geophys. 2019, 17, 247–261. [Google Scholar] [CrossRef]
- Molron, J.; Linde, N.; Baron, L.; Selroos, J.-O.; Darcel, C.; Davy, P. Which fractures are imaged with ground penetrating radar? results from an experiment in the Äspö hardrock laboratory, Sweden. Eng. Geol. 2020, 273, 105674. [Google Scholar] [CrossRef]
- Seren, A.; Demirkol Acikgoz, A. Imaging fractures in a massive limestone with ground penetrating radar, Haymana, Turkey. Sci. Res. Essays 2012, 7, 3368–3381. [Google Scholar] [CrossRef]
- Grasmueck, M. 3-D ground-penetrating radar applied to fracture imaging in gneiss. Geophysics 1996, 61, 1050–1064. [Google Scholar] [CrossRef]
- Isakova, E.P.; Daniliev, S.M.; Mingaleva, T.A. GPR for mapping fractures for the extraction of facing granite from a quarry: A case study from Republic of Karelia. E3S Web Conf. 2021, 266, 07007. [Google Scholar] [CrossRef]
- Johnston, B.J.; Ruffell, A.; Warke, P.; McKinley, J. 3DGPR for the non-destructive monitoring of subsurface weathering of sandstone masonry. Heritage 2019, 2, 2802–2813. [Google Scholar] [CrossRef]
- Elkarmoty, M.; Tinti, F.; Kasmaeeyazdi, S.; Bonduà, S.; Bruno, R. 3D modeling of discontinuities using GPR in a commercial size ornamental limestone block. Constr. Build. Mater. 2018, 166, 81–86. [Google Scholar] [CrossRef]
- Annan, A.P. Ground Penetrating Radar Workshop Notes; Sensors & Software Inc.: Mississauga, ON, Canada, 2001; 192p. [Google Scholar]
- Deparis, J.; Garambois, S. On the use of dispersive APVO GPR curves for thin-bed properties estimation: Theory and application to fracture characterization. Geophysics 2009, 74, J1–J12. [Google Scholar] [CrossRef]
- Jol, H.M. Ground Penetrating Radar Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2008; 544p. [Google Scholar]
- Bradford, J.H.; Deeds, J.C. Ground-Penetrating Radar theory and application of thin-bed offset-dependent reflectivity. Geophysics 2006, 71, K47–K57. [Google Scholar] [CrossRef]
- Arosio, D.; Deparis, J.; Zanzi, L.; Garambois, S. Fracture characterization with GPR: A comparative study. In Proceedings of the 16th International Conference on Ground Penetrating Radar, Hong Kong, 13–16 June 2016. [Google Scholar] [CrossRef]
- Ashurst, J.; Dimes, F.G. (Eds.) Conservation of Building and Decorative Stone; Butterworth-Heinemann Series in Conservation and Museology; Butterworth-Heinemann: Oxford, UK, 1998. [Google Scholar]
- Arndt, B.; DeMarco, M.; Andrew, R. Polyurethane Resin (PUR) Injection for Rock Mass Stabilization; FHWA-CFL/TD-08-004; Federal Highway Administration: Washington, DC, USA; Central Federal Lands Highway Division: Lakewood, CO, USA, 2008.
- López-Buendía, A.M.; Guillem, C.; Cuevas, J.M.; Mateos, F.; Montoto, M. Natural stone reinforcement of discontinuities with resin for industrial processing. Eng. Geol. 2013, 166, 39–51. [Google Scholar] [CrossRef]
- Baraka-Lokmane, S. A new resin impregnation technique for characterising fracture geometry in sandstone cores. Int. J. Rock Mech. Min. Sci. 2002, 39, 815–823. [Google Scholar] [CrossRef]
- De Rosario, I.; Elhaddad, F.; Pan, A.; Benavides, R.; Rivas, T.; Mosquera, M.J. Effectiveness of a novel consolidant on granite: Laboratory and in situ results. Constr. Build. Mater. 2015, 76, 140–149. [Google Scholar] [CrossRef]
- Pinto, A.P.F.; Rodrigues, J.D. Stone consolidation: The role of treatment procedures. J. Cult. Herit. 2008, 9, 38–53. [Google Scholar] [CrossRef]
- Selwitz, C. Epoxy Resins in Stone Conservation; Research in Conservation; Getty Conservation Institute: Marina del Rey, CA, USA, 1992. [Google Scholar]
- Demirdag, S. The effect of using different polymer and cement based materials in pore filling applications on technical parameters of travertine stone. Constr. Build. Mater. 2009, 23, 522–530. [Google Scholar] [CrossRef]
- Clifton, J.R. Stone Consolidating Materials: A Status Report; Department of Commerce, National Bureau of Standards: Washington, DC, USA, 1980; Volume 1118, pp. 15–30.
- Selwitz, C. The use of epoxy resins for stone consolidation. In Proceedings of the Material Issues in Art & Archeology II, San Francisco, CA, USA, 17–21 April 1990; pp. 181–191. [Google Scholar] [CrossRef]
- Tesser, E.; Lazzarini, L.; Bracci, S. Investigation on the chemical structure and ageing transformations of the cycloaliphatic epoxy resin EP2101 used as stone consolidant. J. Cult. Herit. 2018, 31, 72–82. [Google Scholar] [CrossRef]
- Hosseini, M.; Karapanagiotis, I. (Eds.) Advanced Materials for the Conservation of Stone; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Terreni & COA s.r.l. Available online: http://terreniecoa.it/en/quarries/ (accessed on 3 September 2023).
- IDS GeoRadar. Available online: https://idsgeoradar.com/products/ground-penetrating-radar (accessed on 3 September 2023).
- Sandmeier, D.K.J. REFLEXW—GPR and Seismic Processing Software. Available online: https://www.sandmeier-geo.de/reflexw.html (accessed on 3 September 2023).
Small Blocks | Medium Blocks | Large Blocks | ||||
---|---|---|---|---|---|---|
Day | Fracture Filler | Injections [cc] | Fracture Filler | Injections [cc] | Fracture Filler | Injections [cc] |
1st | Air | Air | Air | |||
2nd | Air | Air | Air | |||
3rd | Air | Air | Air | |||
101 | 163 | 45 | ||||
4th | Resin | Resin | Air | |||
265 | ||||||
5th | Resin | Resin | Air+Resin (310 cc) | |||
6th | Resin | Resin | Air+Resin (310 cc) | |||
7th | Resin | Resin | Air+Resin (310 cc) | |||
260 | ||||||
8th | Resin | Resin | Air+Resin (570 cc) | |||
9th | Resin | Resin | Air+Resin (570 cc) | |||
100 | ||||||
10th | Resin | Resin | Resin | |||
11th | Resin | Resin | Resin |
Small Blocks | Medium Blocks | |
---|---|---|
Average variation | 25.59% | 33.64% |
Standard deviation | 3.62% | 7.43% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanzi, L.; Izadi-Yazdanabadi, M.; Karimi-Nasab, S.; Arosio, D.; Hojat, A. Time-Lapse GPR Measurements to Monitor Resin Injection in Fractures of Marble Blocks. Sensors 2023, 23, 8490. https://doi.org/10.3390/s23208490
Zanzi L, Izadi-Yazdanabadi M, Karimi-Nasab S, Arosio D, Hojat A. Time-Lapse GPR Measurements to Monitor Resin Injection in Fractures of Marble Blocks. Sensors. 2023; 23(20):8490. https://doi.org/10.3390/s23208490
Chicago/Turabian StyleZanzi, Luigi, Marjan Izadi-Yazdanabadi, Saeed Karimi-Nasab, Diego Arosio, and Azadeh Hojat. 2023. "Time-Lapse GPR Measurements to Monitor Resin Injection in Fractures of Marble Blocks" Sensors 23, no. 20: 8490. https://doi.org/10.3390/s23208490
APA StyleZanzi, L., Izadi-Yazdanabadi, M., Karimi-Nasab, S., Arosio, D., & Hojat, A. (2023). Time-Lapse GPR Measurements to Monitor Resin Injection in Fractures of Marble Blocks. Sensors, 23(20), 8490. https://doi.org/10.3390/s23208490