Experimental Evaluation of a Hybrid Sensory Feedback System for Haptic and Kinaesthetic Perception in Hand Prostheses
Abstract
:1. Introduction
2. A Hybrid Sensory Feedback System for Hand Prostheses
2.1. Soft Prosthetic Hand
2.2. Hybrid Sensory Feedback System
3. Experimental Methodology
3.1. Participants
3.2. Experimental Protocol
3.3. Analysis
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biddiss, E.; Beaton, D.; Chau, T. Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Technol. 2007, 2, 346–357. [Google Scholar] [CrossRef]
- Belter, J.T.; Segil, J.L.; Dollar, A.M.; Weir, R.F. Mechanical design and performance specifications of anthropomorphic prosthetic hands: A review. J. Rehabil. Res. Dev. 2013, 50, 599–618. [Google Scholar] [CrossRef]
- Laffranchi, M.; Boccardo, N.; Traverso, S.; Lombardi, L.; Canepa, M.; Lince, A.; Semprini, M.; Saglia, J.A.; Naceri, A.; Sacchetti, R.; et al. The Hannes hand prosthesis replicates the key biological properties of the human hand. Sci. Robot. 2020, 5, eabb0467. [Google Scholar] [CrossRef]
- Dunai, L.; Novak, M.; García Espert, C. Human Hand Anatomy-Based Prosthetic Hand. Sensors 2021, 21, 137. [Google Scholar] [CrossRef]
- Cheng, M.; Jiang, L.; Fan, S.; Yang, B.; Dai, J.; Liu, H. Development of a Multisensory Underactuated Prosthetic Hand with Fully Integrated Electronics. IEEE/ASME Trans. Mechatron. 2022, 28, 1187–1198. [Google Scholar] [CrossRef]
- Yin, Z.; Chen, H.; Yang, X.; Liu, Y.; Zhang, N.; Meng, J.; Liu, H. A Wearable Ultrasound Interface for Prosthetic Hand Control. IEEE J. Biomed. Heal. Inform. 2022, 26, 5384–5393. [Google Scholar] [CrossRef]
- Stephens-Fripp, B.; Alici, G.; Mutlu, R. A Review of Non-Invasive Sensory Feedback Methods for Transradial Prosthetic Hands. IEEE Access 2018, 6, 6878–6899. [Google Scholar] [CrossRef]
- Nemah, M.N.; Low, C.Y.; Aldulaymi, O.H.; Ong, P.; Ismail, A.E.; Qasim, A.A. A Review of non-invasive haptic feedback stimulation techniques for upper extremity prostheses. Int. J. Integr. Eng. 2019, 11, 280–290. [Google Scholar] [CrossRef]
- Su, S.; Chai, G.; Meng, J.; Sheng, X.; Mouraux, A.; Zhu, X. Towards optimizing the non-invasive sensory feedback interfaces in a neural prosthetic control. J. Neural Eng. 2022, 19, 016028. [Google Scholar] [CrossRef] [PubMed]
- Johansson, R.S.; Flanagan, J.R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 2009, 10, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Mendez, V.; Iberite, F.; Shokur, S.; Micera, S. Current Solutions and Future Trends for Robotic Prosthetic Hands. Annu. Rev. Control. Robot. Auton. Syst. 2021, 4, 595–627. [Google Scholar] [CrossRef]
- Hazubski, S.; Bamerni, D.; Otte, A. Conceptualization of a Sensory Feedback System in an Anthropomorphic Replacement Hand. Prosthesis 2021, 3, 415–427. [Google Scholar] [CrossRef]
- Qian, C.; Choi, Y.; Kim, S.; Choi, Y.J.; Roe, D.G.; Lee, J.H.; Kang, M.S.; Lee, W.H.; Cho, J.H. Risk-Perceptional and Feedback-Controlled Response System Based on NO2-Detecting Artificial Sensory Synapse. Adv. Funct. Mater. 2022, 32, 2112490. [Google Scholar] [CrossRef]
- Bouteraa, Y.Y.; Abdallah, I.B. A gesture-based telemanipulation control for a robotic arm with biofeedback-based grasp. Ind. Robot. Int. J. 2017, 44, 575–587. [Google Scholar] [CrossRef]
- Günter, C.; Delbeke, J.; Ortiz-Catalan, M. Safety of long-term electrical peripheral nerve stimulation: Review of the state of the art. J. Neuroeng. Rehabil. 2019, 16, 13. [Google Scholar] [CrossRef]
- Cordella, F.; Ciancio, A.L.; Sacchetti, R.; Davalli, A.; Cutti, A.G.; Guglielmelli, E.; Zollo, L. Literature review on needs of upper limb prosthesis users. Front. Neurosci. 2016, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Vargas, L.; Huang, H.; Zhu, Y.; Hu, X. Static and dynamic proprioceptive recognition through vibrotactile stimulation. J. Neural Eng. 2021, 18, 046093. [Google Scholar] [CrossRef] [PubMed]
- Pena, A.E.; Rincon-Gonzalez, L.; Abbas, J.J.; Jung, R. Effects of vibrotactile feedback and grasp interface compliance on perception and control of a sensorized myoelectric hand. PLoS ONE 2019, 14, e0210956. [Google Scholar] [CrossRef]
- Clemente, F.; D’Alonzo, M.; Controzzi, M.; Edin, B.B.; Cipriani, C. Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 24, 1314–1322. [Google Scholar] [CrossRef]
- Witteveen, H.J.B.; Droog, E.A.; Rietman, J.S.; Veltink, P.H. Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses. IEEE Trans. Biomed. Eng. 2012, 59, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, E.; Clark, J.P.; Bianchi, M.; Catalano, M.G.; Bicchi, A.; O’Malley, M.K. The Rice Haptic Rocker: Skin stretch haptic feedback with the Pisa/IIT SoftHand. In Proceedings of the 2017 IEEE World Haptics Conference, Munich, Germany, 5–9 June 2017; pp. 7–12. [Google Scholar]
- Morita, T.; Kikuchi, T.; Ishii, C. Development of sensory feedback device for myoelectric prosthetic hand to provide hardness of objects to users. J. Robot. Mechatron. 2016, 28, 361–370. [Google Scholar] [CrossRef]
- Antfolk, C.; Cipriani, C.; Carrozza, M.C.; Balkenius, C.; Björkman, A.; Lundborg, G.; Rosén, B.; Sebelius, F. Transfer of tactile input from an artificial hand to the forearm: Experiments in amputees and able-bodied volunteers. Disabil. Rehabil. Assist. Technol. 2012, 8, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Antfolk, C.; D’Alonzo, M.; Rosén, B.; Lundborg, G.; Sebelius, F.; Cipriani, C. Sensory feedback in upper limb prosthetics. Expert Rev. Med. Devices 2013, 10, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Svensson, P.; Wijk, U.; Björkman, A.; Antfolk, C. A review of invasive and non-invasive sensory feedback in upper limb prostheses. Expert Rev. Med. Devices 2017, 14, 439–447. [Google Scholar] [CrossRef]
- Takahashi, M.; Nagano, H.; Tazaki, Y.; Yokokohji, Y. Effective haptic feedback type for robot-mediated material discrimination depending on target properties. Front. Virtual Real. 2023, 4, 1070739. [Google Scholar] [CrossRef]
- Vargas, L.; Huang, H.; Zhu, Y.; Hu, X. Object recognition via evoked sensory feedback during control of a prosthetic hand. IEEE Robot. Autom. Lett. 2021, 7, 207–214. [Google Scholar] [CrossRef]
- Jimenez, M.C.; Fishel, J.A. Evaluation of force, vibration and thermal tactile feedback in prosthetic limbs. In Proceedings of the 2014 IEEE Haptics Symposium (HAPTICS), Houston, TX, USA, 23–26 February 2014; pp. 437–441. [Google Scholar]
- Chatterjee, A.; Chaubey, P.; Martin, J.C.; Thakor, N. Testing a prosthetic haptic feedback simulator with an interactive force matching task. JPO J. Prosthet. Orthot. 2008, 20, 27–34. [Google Scholar] [CrossRef]
- Moore, C.H.; Corbin, S.F.; Mayr, R.; Shockley, K.; Silva, P.L.; Lorenz, T. Grasping Embodiment: Haptic Feedback for Artificial Limbs. Front. Neurorobot. 2021, 15, 66. [Google Scholar] [CrossRef]
- Stephens-Fripp, B.; Mutlu, R.; Alici, G. A Comparison of recognition and sensitivity in the upper arm and lower arm to mechanotactile stimulation. IEEE Trans. Med. Robot. Bionics 2019, 2, 76–85. [Google Scholar] [CrossRef]
- ElKoura, G.; Singh, K. Handrix: Animating the Human Hand. In Proceedings of the 2003 ACM SIG-GRAPH/Eurographics Symposium on Computer Animation, San Diego, CA, USA, 26–27 July 2003; Eurographics Association: Goslar, Germany, 2003; pp. 110–119. [Google Scholar]
- Tawk, C.; Sariyildiz, E.; Alici, G. Force Control of a 3D Printed Soft Gripper with Built-in Pneumatic Touch Sensing Chambers pTSC. Soft Robot. 2022, 9, 970–980. [Google Scholar] [CrossRef]
- Mutlu, R.; Sariyildiz, E.; Nozaki, T.; Alici, G. Design of a Multi-Stage Stiffness Enhancing Unit for a Soft Robotic Finger and its Robust Motion Control. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 5074–5079. [Google Scholar]
- Mohammadi, A.; Lavranos, J.; Zhou, H.; Mutlu, R.; Alici, G.; Tan, Y.; Choong, P.; Oetomo, D. A practical 3D-printed soft robotic prosthetic hand with multi-articulating capabilities. PLoS ONE 2020, 15, e0232766. [Google Scholar] [CrossRef] [PubMed]
- Sariyildiz, E.; Mutlu, R.; Roberts, J.; Kuo, C.-H.; Ugurlu, B. Design and Control of a Novel Variable Stiffness Series Elastic Actuator. IEEE/ASME Trans. Mechatron. 2023, 28, 1534–1545. [Google Scholar] [CrossRef]
- Aydin, M.; Sariyildiz, E.; Tawk, C.D.; Mutlu, R.; Alici, G. Variable Stiffness Improves Safety and Performance in Soft Ro-botics. In Proceedings of the 2023 IEEE International Conference on Mechatronics (ICM), Loughborough, UK, 15–17 March 2023; pp. 1–6. [Google Scholar]
- Yong, X.; Jing, X.; Jiang, Y.; Yokoi, H.; Kato, R. Tendon drive finger mechanisms for an EMG prosthetic hand with two motors. In Proceedings of the 2014 7th International Conference on Biomedical Engineering and Informatics, Dalian, China, 14–16 October 2014; IEEE: Loughborough, UK, 2014; pp. 568–572. [Google Scholar]
- Sariyildiz, E.; Hangai, S.; Uzunovic, T.; Nozaki, T. Discrete-Time Analysis and Synthesis of Disturbance Observer-Based Robust Force Control Systems. IEEE Access 2021, 9, 148911–148924. [Google Scholar] [CrossRef]
- Ugurlu, B.; Nishimura, M.; Hyodo, K.; Kawanishi, M.; Narikiyo, T. Proof of Concept for Robot-Aided Upper Limb Reha-bilitation Using Disturbance Observers. IEEE Trans. Hum. Mach. Syst. 2015, 45, 110–118. [Google Scholar] [CrossRef]
- Bechet, F.; Ogawa, K.; Sariyildiz, E.; Ohnishi, K. Electrohydraulic Transmission System for Minimally Invasive Robotics. IEEE Trans. Ind. Electron. 2015, 62, 7643–7654. [Google Scholar] [CrossRef]
- Raibert, M.H.; Craig, J.J. Hybrid Position/Force Control of Manipulators. ASME J. Dyn. Sys. Meas. Control 1981, 103, 126–133. [Google Scholar] [CrossRef]
- Liaci, E.; Bach, M.; Tebartz van Elst, L.; Heinrich, S.P.; Kornmeier, J. Ambiguity in Tactile Apparent Motion Perception. PLoS ONE 2016, 11, e0152736. [Google Scholar] [CrossRef]
- Ballardini, G.; Florio, V.; Canessa, A.; Carlini, G.; Morasso, P.; Casadio, M. Vibrotactile Feedback for Improving Standing Balance. Front. Bioeng. Biotechnol. 2020, 8, 94. [Google Scholar] [CrossRef]
- McConnell, A.C.; Vallejo, M.; Moioli, R.C.; Brasil, F.L.; Secciani, N.; Nemitz, M.P.; Riquart, C.P.; Corne, D.W.; Vargas, P.A.; Stokes, A.A. SOPHIA: Soft Orthotic Physiotherapy Hand Interactive Aid. Front. Mech. Eng. 2017, 3, 3. [Google Scholar] [CrossRef]
- Hagengruber, A.; Höppner, H.; Vogel, J. Human’s Capability to Discriminate Spatial Forces at the Big Toe. Front. Neurorobot. 2018, 12, 13. [Google Scholar] [CrossRef]
Relaxed State | Tensed State | |||||
---|---|---|---|---|---|---|
P | F1 | F2 | B | F1 | F2 | B |
1 | 100% | 100% | 100% | 100% | 100% | 100% |
2 | 100% | 83.3% (0E,1L, 1M,0H) | 100% | 91.7% (0E,0L, 1M,0H) | 100% | 100% |
3 | 100% | 91.7% (0E,0L, 0M,1H) | 100% | 100% | 100% | 100% |
4 | 100% | 75% (0E,1L, 1M,1H) | 100% | 91.7% (0E,0L, 0M,1H) | 100% | 83.3% (0E,0L, 2M,0H) |
5 | 100% | 100% | 100% | 100% | 91.7% (0E,0L, 0M,1H) | 100% |
6 | 58.3% (0E,1L, 2M,2H) | 83.3% (0E,1L, 1M,0H) | 91.7% (0E,1L, 0M,0H) | 66.7% (0E,0L, 2M,2H) | 91.7% (0E,0L, 0M,1H) | 41.7% (0E,2L, 3M,2H) |
7 | 75% (0E,2L, 1M,0H) | 75% (0E,2L, 0M,0H) | 100% | 91.7% (0E,0L, 0M,1H) | 91.7% (0E,1L, 0M,0H) | 91.7% (0E,1L, 0M,0H) |
8 | 66.7% (0E,0L, 3M,1H) | 66.7% (0E,1L, 2M,1H) | 83.3% (0E,1L, 0M,1H) | 83.3% (0E,0L, 1M,1H) | 83.3% (0E,1L, 0M,1H) | 75% (0E,1L, 2M,0H) |
9 | 100% | 91.7% (0E,0L, 1M,0H) | 100% | 100% | 91.7% (0E,0L, 1M,0H) | 100% |
10 | 66.7% (0E,1L, 1M,2H) | 91.7% (0E,0L, 0M,1H) | 75% (0E,1L, 1M,1H) | 83.3% (0E,1L, 0M,1H) | 91.7% (0E,0L, 1M,0H) | 91.7% (0E,0L, 0M,1H) |
11 | 91.7% (0E,1L, 0M,0H) | 83.3% (0E,0L, 1M,1H) | 100% | 100% | 91.7% (0E,0L, 1M,0H) | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sariyildiz, E.; Hanss, F.; Zhou, H.; Sreenivasa, M.; Armitage, L.; Mutlu, R.; Alici, G. Experimental Evaluation of a Hybrid Sensory Feedback System for Haptic and Kinaesthetic Perception in Hand Prostheses. Sensors 2023, 23, 8492. https://doi.org/10.3390/s23208492
Sariyildiz E, Hanss F, Zhou H, Sreenivasa M, Armitage L, Mutlu R, Alici G. Experimental Evaluation of a Hybrid Sensory Feedback System for Haptic and Kinaesthetic Perception in Hand Prostheses. Sensors. 2023; 23(20):8492. https://doi.org/10.3390/s23208492
Chicago/Turabian StyleSariyildiz, Emre, Fergus Hanss, Hao Zhou, Manish Sreenivasa, Lucy Armitage, Rahim Mutlu, and Gursel Alici. 2023. "Experimental Evaluation of a Hybrid Sensory Feedback System for Haptic and Kinaesthetic Perception in Hand Prostheses" Sensors 23, no. 20: 8492. https://doi.org/10.3390/s23208492
APA StyleSariyildiz, E., Hanss, F., Zhou, H., Sreenivasa, M., Armitage, L., Mutlu, R., & Alici, G. (2023). Experimental Evaluation of a Hybrid Sensory Feedback System for Haptic and Kinaesthetic Perception in Hand Prostheses. Sensors, 23(20), 8492. https://doi.org/10.3390/s23208492