Signal Photon Extraction Method for ICESat-2 Data Using Slope and Elevation Information Provided by Stereo Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Datasets
2.2. Methods
2.2.1. Slope Estimation Using Optical Stereo Images
2.2.2. Registration of Dense Matching Point Cloud Data to Laser Altimetry Data
2.2.3. Adaptive Density Clustering Algorithm Based on an Optimally Fitting Terrain Slope
2.2.4. Evaluation Metrics
3. Results and Discussion
3.1. Accuracy of the Terrain Slopes Obtained from Inversion Using Stereo Optical Images
3.2. Extraction of Typical Ground Surface Signal Photons
3.3. Extraction of Weak Beam Signal Photons
3.4. Limitations and Recommendations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, X.; Li, G.; Gao, X.; Chen, J. The rigorous geometric model of satellite laser altimeter and preliminarily accuracy validation. Acta Geod. Cartogr. Sin. 2016, 45, 1182–1191. [Google Scholar]
- Neuenschwander, A.L.; Magruder, L.A. Canopy and terrain height retrievals with ICESat-2: A first look. Remote Sens. 2019, 11, 1721. [Google Scholar] [CrossRef]
- Kwok, R.; Kacimi, S.; Webster, M.A.; Kurtz, N.T.; Petty, A.A. Arctic snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards: A first examination. J. Geophys. Res. Oceans 2020, 125, e2019JC016008. [Google Scholar] [CrossRef]
- Bocquet, M.; Fleury, S.; Piras, F.; Rinne, E.; Sallila, H.; Garnier, F.; Rémy, F. Arctic sea ice radar freeboard retrieval from the European Remote-Sensing Satellite (ERS-2) using altimetry: Toward sea ice thickness observation from 1995 to 2021. Cryosphere 2023, 17, 3013–3039. [Google Scholar] [CrossRef]
- Li, S.; Liao, J.; Zhang, L. Extraction and analysis of elevation changes in Antarctic ice sheet from CryoSat-2 and Sentinel-3 radar altimeters. J. Appl. Remote Sens. 2022, 16, 034514. [Google Scholar] [CrossRef]
- Wild, C.T.; Dotto, T.S.; Alley, K.E.; Collao-Barrios, G.; Muto, A.; Hall, R.A.; Truffer, M.; Scambos, T.A.; Heywood, K.J.; Pettit, E.C. A tale of two ice shelves: Contrasting behavior during the regional destabilization of the Dotson-Crosson Ice Shelf System, West Antarctica. ESS Open Arch. 2022, submitted. [CrossRef]
- Narine, L.L.; Popescu, S.; Neuenschwander, A.; Zhou, T.; Srinivasan, S.; Harbeck, K. Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data. Remote Sens. Environ. 2019, 224, 1–11. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.C.; Malambo, L. Using ICESat-2 to estimate and map forest aboveground biomass: A first example. Remote Sens. 2020, 12, 1824. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Yang, X.; Nie, S. Verification of leaf area index retrieved by ICESAT-2 photon-counting lidar with airborne lidar. In Proceedings of the IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 7305–7308. [Google Scholar]
- Narine, L.; Malambo, L.; Popescu, S. Characterizing canopy cover with ICESat-2: A case study of southern forests in Texas and Alabama, USA. Remote Sens. Environ. 2022, 281, 113242. [Google Scholar] [CrossRef]
- Lao, J.; Wang, C.; Nie, S.; Xi, X.; Wang, J. Monitoring and analysis of water level changes in Mekong River from ICESat-2 spaceborne laser altimetry. Water 2022, 14, 1613. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, G.; Bo, Y.; Guo, X.; Bao, J. Performance evaluation of combining ICESat-2 and GEDI laser altimetry missions for inland lake level retrievals. Geosci. Lett. 2022, 9, 1–13. [Google Scholar] [CrossRef]
- Xie, J.; Li, B.; Jiao, H.; Zhou, Q.; Mei, Y.; Xie, D.; Wu, Y.; Sun, X.; Fu, Y. Water level change monitoring based on a new denoising algorithm using data from Landsat and ICESat-2: A case study of Miyun Reservoir in Beijing. Remote Sens. 2022, 14, 4344. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, L.; Zhan, P.; Luo, S.; Chen, T.; Liu, K.; Song, C. Synthesis of the ICESat/ICESat-2 and CryoSat-2 observations to reconstruct time series of lake level. Int. J. Digit. Earth 2023, 16, 183–209. [Google Scholar] [CrossRef]
- Forfinski-Sarkozi, N.A.; Parrish, C.E. Active-passive spaceborne data fusion for mapping nearshore bathymetry. Photogramm. Eng. Remote Sens. 2019, 85, 281–295. [Google Scholar] [CrossRef]
- Le Quilleuc, A.; Collin, A.; Jasinski, M.F.; Devillers, R. Very high-resolution satellite-derived bathymetry and habitat mapping using pleiades-1 and ICESat-2. Remote Sens. 2022, 14, 133. [Google Scholar] [CrossRef]
- Liu, X.; Hui, G.; Guo, J.; Zhang, T.; Song, M. Inversion of Deflection of the Vertical in the South China Sea Using ICESat-2 Sea Surface Height Data. Remote Sens. 2023, 15, 30. [Google Scholar] [CrossRef]
- Van An, N.; Quang, N.H.; Son, T.P.H.; An, T.T. High-resolution benthic habitat mapping from machine learning on PlanetScope imagery and ICESat-2 data. Geocarto Int. 2023, 38, 2184875. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Pitts, K. The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sens. Environ. 2019, 221, 247–259. [Google Scholar] [CrossRef]
- Magruder, L.A.; Wharton, M.E.; Stout, K.D.; Neuenschwander, A.L. Noise filtering techniques for photon-counting ladar data. In Laser Radar Technology and Applications XVII; SPIE: Baltimore, MA, USA, 2012; Volume 8379, pp. 237–245. [Google Scholar]
- Chen, B.; Pang, Y. A denoising approach for detection of canopy and ground from ICESat-2’s airborne simulator data in Maryland, USA. In AOPC 2015: Advances in Laser Technology and Applications; SPIE: Bellingham, WA, USA, 2015; Volume 9671, p. 96711S. [Google Scholar]
- Herzfeld, U.C.; McDonald, B.W.; Wallin, B.F.; Neumann, T.A.; Markus, T.; Brenner, A.; Field, C. Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2109–2125. [Google Scholar] [CrossRef]
- Popescu, S.C.; Zhou, T.; Nelson, R.; Neuenschwander, A.; Sheridan, R.; Narine, L.; Walsh, K.M. Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data. Remote Sens. Environ. 2018, 208, 154–170. [Google Scholar] [CrossRef]
- Zhang, J.; Kerekes, J. An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data. IEEE Geosci. Remote Sens. Lett. 2014, 12, 726–730. [Google Scholar] [CrossRef]
- Zhu, X.; Nie, S.; Wang, C.; Xi, X.; Wang, J.; Li, D.; Zhou, H. A noise removal algorithm based on OPTICS for photon-counting LiDAR data. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1471–1475. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Ma, Y.; Xu, N.; Zhang, W.; Li, S. Signal photon extraction method for weak beam data of ICESat-2 using information provided by strong beam data in mountainous areas. Remote Sens. 2021, 13, 863. [Google Scholar] [CrossRef]
- Zhu, X.; Nie, S.; Wang, C.; Xi, X.; Hu, Z. A ground elevation and vegetation height retrieval algorithm using micro-pulse photon-counting lidar data. Remote Sens. 2018, 10, 1962. [Google Scholar] [CrossRef]
- Wang, X.; Liang, X. Photon-counting laser altimeter data filtering based on hierarchical adaptive filter for forest scenario. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 43, 205–210. [Google Scholar] [CrossRef]
- Xie, H.; Ye, D.; Xu, Q.; Sun, Y.; Huang, P.; Tong, X.; Guo, Y.; Liu, X.; Liu, S. A density-based adaptive ground and canopy detecting method for ICESat-2 photon-counting Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Tian, X.; Zhang, Z.; Zhang, W. An adaptive directional model for estimating vegetation canopy height using space-borne photon counting laser altimetry data. J. Infrared Millim. Waves. 2020, 39, 363–371. [Google Scholar]
- Atwood, A.; West, A.J. Evaluation of high-resolution DEMs from satellite imagery for geomorphic applications: A case study using the SETSM algorithm. Earth Surf. Process. Landf. 2022, 47, 706–722. [Google Scholar] [CrossRef]
- Wang, S.; Ren, Z.; Wu, C.; Lei, Q.; Gong, W.; Ou, Q.; Zhang, H.; Ren, G.; Li, C. DEM generation from Worldview-2 stereo imagery and vertical accuracy assessment for its application in active tectonics. Geomorphology 2019, 336, 107–118. [Google Scholar] [CrossRef]
- Neumann, T.A.; Brenner, A.; Hancock, D.; Robbins, J.; Saba, J.; Harbeck, K.; Gibbons, A.; Lee, J.; Luthcke, S.B.; Re-bold, T.; et al. ATLAS/ICESat-2 L2A Global Geolocated Photon Data, Version 5 [Data Set]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Neuenschwander, A.L.; Pitts, K.L.; Jelley, B.P.; Robbins, J.; Markel, J.; Popescu, S.C.; Nelson, R.F.; Harding, D.; Pederson, D.; Klotz, B.; et al. ATLAS/ICESat-2 L3A Land and Vegetation Height, Version 6 [Data Set]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2023. [Google Scholar] [CrossRef]
- Hirschmuller, H. Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 30, 328–341. [Google Scholar] [CrossRef]
- Luthcke, S.B.; Thomas, T.C.; Pennington, T.A.; Rebold, T.W.; Nicholas, J.B.; Rowlands, D.D.; Gardner, A.S.; Bae, S. ICESat-2 pointing calibration and geolocation performance. Earth Space Sci. 2021, 8, e2020EA001494. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD’96), Portland, OR, USA, 2–4 August 1996; AAAI Press: Palo Alto, CA, USA, 1996; pp. 226–231. [Google Scholar]
- Kwok, R.; Markus, T.; Morison, J.S.; Palm, S.P.; Neumann, T.A.; Brunt, K.M.; Cook, W.B.; Hancock, D.W.; Cunningham, G.F. Profiling Sea Ice with a Multiple Altimeter Beam Experimental Lidar (MABEL). J. Atmos. Ocean. Technol. 2014, 31, 1151–1168. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Z.; Glennie, C. A novel noise filtering model for photon-counting laser altimeter data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 947–951. [Google Scholar] [CrossRef]
Satellite | Launch Country | Launch Time | Spatial Resolution | Geopositioning Accuracy without GCPs |
---|---|---|---|---|
Gaofen-7 | China | 2019 | Front view: 0.8 m Back view: 0.65 m | Horizontal: 6 m Vertical: 2 m |
Ziyuan-3 | China | 2016 | Front view: 2.5 m Ndir: 2.1 m Back view: 2.5 m | Horizontal: 10 m Vertical: 8 m |
Tianhui-1 | China | 2015 | Front view: 5 m Ndir: 4.1 m Back view: 5 m | Horizontal: 7 m Vertical: 5 m |
Data Source | Name | Acquisition Time |
---|---|---|
Gaofen-7 | GF701_006787_E113.4_N34.6_20210122113017_BWD_01_ SC0_0001_2101256512.tif GF701_006787_E113.4_N34.6_20210122113017_FWD_01_ SC0_0001_2101256512.tif | 22 January 2021 |
Ziyuan-3 | zy301a_bwd_045459_006138_20200317111756_01_ sec_0001_2003183114.tif zy301a_nad_045459_006138_20200317111727_01_ sec_0001_2003186186.tif | 17 March 2020 |
Tianhui-1 | TH01-03_P202101189046321_1B_SXZ_1_08_005_135.tif TH01-03_P202101189046321_1B_SXZ_3_08_005_135.tif | 18 January 2021 |
ATL03/ATL08 | ATL03_20200829230935_10020802_005.h5 (gt3l, dataset 1) ATL08_20200829230935_10020802_005.h5 (gt3l, dataset 1) | 29 August 2020 |
ATL03_20210218030147_08571006_005.h5 (gt3r, dataset 2) ATL08_20210218030147_08571006_005.h5 (gt3r, dataset 2) | 18 February 2021 | |
ATL03_20201222054939_13600906_005.h5 (gt1l, dataset 3) ATL08_20201222054939_13600906_005.h5 (gt1l, dataset 3) | 22 December 2020 |
Algorithm | Total Number | TP | FN | FP | R | P | F1 |
---|---|---|---|---|---|---|---|
ATL08 | 30,119 | 25,424 | 797 | 4695 | 96.96% | 84.41% | 90.25% |
Gaofen-7 | 24,962 | 23,608 | 2613 | 1354 | 90.03% | 94.58% | 92.25% |
Tianhui-1 | 24,606 | 23,295 | 2926 | 1311 | 88.84% | 94.67% | 91.66% |
Ziyuan-3 | 24,286 | 23,038 | 3183 | 1248 | 87.86% | 94.86% | 91.23% |
Algorithm | Total Number | TP | FN | FP | R | P | F1 |
ATL08 | 31,443 | 27,613 | 3267 | 3830 | 89.42% | 87.82% | 88.61% |
SE-DBSCAN | 28,664 | 26,567 | 4313 | 2097 | 86.03% | 92.68% | 89.23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, L.; Fan, D.; Ji, S.; Gong, Z.; Li, D.; Dong, Y. Signal Photon Extraction Method for ICESat-2 Data Using Slope and Elevation Information Provided by Stereo Images. Sensors 2023, 23, 8752. https://doi.org/10.3390/s23218752
Gu L, Fan D, Ji S, Gong Z, Li D, Dong Y. Signal Photon Extraction Method for ICESat-2 Data Using Slope and Elevation Information Provided by Stereo Images. Sensors. 2023; 23(21):8752. https://doi.org/10.3390/s23218752
Chicago/Turabian StyleGu, Linyu, Dazhao Fan, Song Ji, Zhihui Gong, Dongzi Li, and Yang Dong. 2023. "Signal Photon Extraction Method for ICESat-2 Data Using Slope and Elevation Information Provided by Stereo Images" Sensors 23, no. 21: 8752. https://doi.org/10.3390/s23218752
APA StyleGu, L., Fan, D., Ji, S., Gong, Z., Li, D., & Dong, Y. (2023). Signal Photon Extraction Method for ICESat-2 Data Using Slope and Elevation Information Provided by Stereo Images. Sensors, 23(21), 8752. https://doi.org/10.3390/s23218752