ICESat-2 for Canopy Cover Estimation at Large-Scale on a Cloud-Based Platform
Abstract
:1. Introduction
- Develop a methodology to estimate canopy cover with the segments of the ICESat-2 ATL08 product and then test strong or weak energy level beams’ segments separately as inputs in estimation accuracy,
- Integrate ICESat-2 ATL08 data and satellite imagery to produce a large-scale map using a cloud-based platform, such as GEE,
- Assess the accuracy of the derived canopy cover map using the visual grid-based accuracy assessment method.
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Filtering
- The land cover information of the segments in the ATL08 data was obtained from the 2019 Copernicus Land Cover auxiliary data set with a resolution of 100 m which consists of 23 discrete land cover classes [29,51]. Segments not in the 12 Copernicus Land Cover classes related to forest land cover were excluded from further analysis.
- According to the FAO definition, for an area to be considered a forest, it must have at least 10 percent tree canopy cover, and the tree height must be taller than 5 m. Segments with less than 10 percent canopy cover and tree heights shorter than 5 m were filtered out using the ATL08 variables.
- If a segment has fewer than 50 classified photons, it was accepted as noise and excluded from the analysis. The decision to exclude these segments from the analysis was based on the recommendation provided in the ATL08 product manual [44].
- Similarly, if a segment has fewer than 10 canopy photons, it was accepted as an unreliable segment and filtered out from the dataset [44].
- It was determined that the number of TOC photons in some segments was higher than the number of canopy photons that contains TOC photons beside mid-level canopy photons, and these segments were excluded as errors (Figure 2).
2.3. Canopy Cover Estimation Model (CCEM)
Vegetation Indices | Source | Formula |
---|---|---|
Difference Vegetation Index (DVI) | [60] | |
Enhanced Vegetation Index (EVI) | [61] | |
Global Environmental Monitoring Index (GEMI) | [62] | |
Green Atmospherically Resistant Index (GARI) | [63] | |
Green Chlorophyll Index (GCI) | [64] | |
Green Difference Vegetation Index (GDVI) | [65] | |
Green Leaf Index (GLI) | [66] | |
Green Normalized Difference Vegetation Index (GNDVI) | [67] | |
Green Optimized Soil Adjusted Vegetation Index (GOSAVI) | [65] | |
Green Ratio Vegetation Index (GRVI) | [68] | |
Green Soil Adjusted Vegetation Index (GSAVI) | [65] | |
Green Vegetation Index (GVI) | [69] | |
Infrared Percentage Vegetation Index (IPVI) | [70] | |
Leaf Area Index (LAI) | [71] | |
Modified Non-Linear Index (MNLI) | [72] | |
Modified Soil Adjusted Vegetation Index 2 (MSAVI2) | [73] | |
Modified Simple Ratio (MSR) | [74] | |
Non-Linear Index (NLI) | [75] | |
Normalized Difference Vegetation Index (NDVI) | [76] | |
Optimized Soil Adjusted Vegetation Index (OSAVI) | [77] | |
Renormalized Difference Vegetation Index (RDVI) | [78] | |
Soil Adjusted Vegetation Index (SAVI) | [61] | |
Simple Ratio (SR) | [79] | |
Transformed Difference Vegetation Index (TDVI) | [80] | |
Visible Atmospherically Resistant Index (VARI) | [81] | |
Wide Dynamic Range Vegetation Index (WDRVI) | [82] |
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avery, T.E.; Burkart, H.E. Forest Measurements; McGraw-Hill: New York, NY, USA, 1994; p. 331. [Google Scholar]
- Korhonen, L.; Korhonen, K.; Rautiainen, M.; Stenberg, P. Estimation of forest canopy cover: A comparison of field measurement techniques. Silva Fenn. 2006, 40, 577–588. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.J.; Sutton, S.L. The effects of rainforest canopy loss on arboreal dung beetles in Borneo: Implications for the measurement of biodiversity in derived tropical ecosystems. Divers. Distrib. 1998, 4, 167–173. [Google Scholar] [CrossRef]
- Grether, G.F.; Millie, D.F.; Bryant, M.J.; Reznick, D.N.; Mayea, W. Rain forest canopy cover, resource availability, and life history evolution in guppies. Ecology 2001, 82, 1546–1559. [Google Scholar] [CrossRef]
- McIntosh, A.C.; Gray, A.N.; Garman, S.L. Estimating Canopy Cover from Standard Forest Inventory Measurements in Western Oregon. For. Sci. 2012, 58, 154–167. [Google Scholar] [CrossRef] [Green Version]
- Naqinezhad, A.; De Lombaerde, E.; Gholizadeh, H.; Wasof, S.; Perring, M.P.; Meeussen, C.; De Frenne, P.; Verheyen, K. The combined effects of climate and canopy cover changes on understorey plants of the Hyrcanian forest biodiversity hotspot in northern Iran. Glob. Chang. Biol. 2021, 28, 1103–1118. [Google Scholar] [CrossRef] [PubMed]
- Buckley, D.S.; Isebrands, J.G.; Sharik, T.L. Practical Field Methods of Estimating Canopy Cover, PAR, and LAI in Michigan Oak and Pine Stands. North. J. Appl. For. 1999, 16, 25–32. [Google Scholar] [CrossRef]
- Jennings, S.B.; Brown, N.D.; Sheil, D. Assessing forest canopies and understorey illumination: Canopy closure, canopy cover and other measures. For. Int. J. For. Res. 1999, 72, 59–74. [Google Scholar] [CrossRef]
- Majasalmi, T.; Rautiainen, M. The impact of tree canopy structure on understory variation in a boreal forest. For. Ecol. Manag. 2020, 466, 118100. [Google Scholar] [CrossRef] [PubMed]
- Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest. Remote Sens. 2015, 7, 10017–10041. [Google Scholar] [CrossRef] [Green Version]
- Stojanova, D.; Panov, P.; Gjorgjioski, V.; Kobler, A.; Džeroski, S. Estimating vegetation height and canopy cover from remotely sensed data with machine learning. Ecol. Inform. 2010, 5, 256–266. [Google Scholar] [CrossRef]
- McPherson, E.G.; Simpson, J.R.; Xiao, Q.; Wu, C. Million trees Los Angeles canopy cover and benefit assessment. Landsc. Urban Plan. 2011, 99, 40–50. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Falkowski, M.J.; Hudak, A.T.; Evans, J.; Robinson, A.; Steele, C.M. A cross-comparison of field, spectral, and lidar estimates of forest canopy cover. Can. J. Remote Sens. 2009, 35, 447–459. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.; Neuenschwander, A.; Zhou, T.; Srinivasan, S.; Harbeck, K. Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data. Remote Sens. Environ. 2019, 224, 1–11. [Google Scholar] [CrossRef]
- Tang, H.; Armston, J.; Hancock, S.; Marselis, S.; Goetz, S.; Dubayah, R. Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sens. Environ. 2019, 231, 111262. [Google Scholar] [CrossRef]
- Wang, M.; Tseng, Y.H. Lidar data segmentation and classification based on octree structure. Parameters 2004, 1, 1–6. [Google Scholar]
- Wulder, M.; White, J.; Hay, G.; Castilla, G. Pixels to objects to information: Spatial context to aid in forest characterization with remote sensing. In Object-Based Image Analysis; Springer: Berlin/Heidelberg, Germany, 2008; pp. 345–363. [Google Scholar]
- Schutz, B.E.; Zwally, H.J.; Shuman, C.A.; Hancock, D.; DiMarzio, J.P. Overview of the ICESat Mission. Geophys. Res. Lett. 2005, 32, L21S01. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Thomas, R. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn. 2002, 34, 405–445. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Yi, D.; Kwok, R.; Zhao, Y. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J. Geophys. Res. Ocean. 2008, 113, C02S15. [Google Scholar] [CrossRef] [Green Version]
- García, M.; Popescu, S.; Riaño, D.; Zhao, K.; Neuenschwander, A.; Agca, M.; Chuvieco, E. Characterization of canopy fuels using ICESat/GLAS data. Remote Sens. Environ. 2012, 123, 81–89. [Google Scholar] [CrossRef]
- Los, S.O.; Rosette, J.A.B.; Kljun, N.; North, P.R.J.; Chasmer, L.; Suárez, J.C.; Hopkinson, C.; Hill, R.A.; van Gorsel, E.; Mahoney, C.; et al. Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data. Geosci. Model Dev. 2012, 5, 413–432. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, A.; Pitts, K. The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sens. Environ. 2018, 221, 247–259. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Neuenschwander, A.L.; Magruder, L.A. Canopy and Terrain Height Retrievals with ICESat-2: A First Look. Remote Sens. 2019, 11, 1721. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Niu, Z.; Shang, R.; Qin, Y.; Wang, L.; Chen, H. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102163. [Google Scholar] [CrossRef]
- Liu, M.; Popescu, S. Estimation of biomass burning emissions by integrating ICESat-2, Landsat 8, and Sentinel-1 data. Remote Sens. Environ. 2022, 280, 113172. [Google Scholar] [CrossRef]
- Buchhorn, M.; Bertels, L.; Smets, B.; De Roo, B.; Lesiv, M.; Tsendbazar, N.E.; Masiliunas, D.; Li, L. Copernicus Global Land Service: Land Cover 100 m: Version 3 Globe 2015–2019: Algorithm Theoretical Basis Document; Zenodo: Geneva, Switzerland, 2020. [Google Scholar]
- Liu, M.; Popescu, S.; Malambo, L. Feasibility of Burned Area Mapping Based on ICESAT−2 Photon Counting Data. Remote Sens. 2019, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S.; Zhou, T.; Nelson, R.; Neuenschwander, A.; Sheridan, R.; Narine, L.; Walsh, K. Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data. Remote Sens. Environ. 2018, 208, 154–170. [Google Scholar] [CrossRef]
- Duncanson, L.; Neuenschwander, A.; Hancock, S.; Thomas, N.; Fatoyinbo, T.; Simard, M.; Silva, C.A.; Armston, J.; Luthcke, S.B.; Hofton, M.; et al. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sens. Environ. 2020, 242, 111779. [Google Scholar] [CrossRef]
- Nandy, S.; Srinet, R.; Padalia, H. Mapping forest height and aboveground biomass by integrating ICESat-2, Sentinel-1 and Sentinel-2 data using Random Forest algorithm in northwest Himalayan foothills of India. Geophys. Res. Lett. 2021, 48, e2021GL093799. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.C.; Malambo, L. Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example. Remote Sens. 2020, 12, 1824. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Guenther, E.; White, J.C.; Duncanson, L.; Montesano, P. Validation of ICESat-2 terrain and canopy heights in boreal forests. Remote Sens. Environ. 2020, 251, 112110. [Google Scholar] [CrossRef]
- Liu, A.; Cheng, X.; Chen, Z. Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals. Remote Sens. Environ. 2021, 264, 112571. [Google Scholar] [CrossRef]
- Malambo, L.; Popescu, S.C. Assessing the agreement of ICESat-2 terrain and canopy height with airborne lidar over US ecozones. Remote Sens. Environ. 2021, 266, 112711. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Robinson, N.P.; Allred, B.W.; Jones, M.O.; Moreno, A.; Kimball, J.S.; Naugle, D.E.; Erickson, T.A.; Richardson, A.A. A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States. Remote Sens. 2017, 9, 863. [Google Scholar] [CrossRef] [Green Version]
- Campos-Taberner, M.; Moreno-Martínez, Á.; García-Haro, F.J.; Camps-Valls, G.; Robinson, N.P.; Kattge, J.; Running, S.W. Global Estimation of Biophysical Variables from Google Earth Engine Platform. Remote Sens. 2018, 10, 1167. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Stow, D.; Chen, H.L.; Lewison, R.; An, L.; Shi, L. Mapping Vegetation and Land Use Types in Fanjingshan National Nature Reserve Using Google Earth Engine. Remote Sens. 2018, 10, 927. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Knapp, D.; Lyons, M.; Roelfsema, C.; Phinn, S.; Schill, S.; Asner, G. Automated Global Shallow Water Bathymetry Mapping Using Google Earth Engine. Remote Sens. 2021, 13, 1469. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Pitts, K.; Jelley, B.; Robbins, J.; Markel, J.; Popescu, S.C.; Nelson, R.; Harding, D.; Pederson, D.; Klotz, B.; et al. Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) Algorithm Theoretical Basis Document (ATBD) for Land-Vegetation along-Track Products (ATL08); National Aeronautics and Space Administration: Washington, DC, USA, 2021.
- Orman Genel Müdürlüğü. Türkiye Orman Varlığı; Orman ve Su İşleri Bakanlığı Orman Genel Müdürlüğü: Ankara, Turkey, 2020.
- Aksoy, N.; Tuğ, N.G.; Eminağaoğlu, Ö. Türkiye’nin Vejetasyon Yapısı; Türkiye’nin Doğal-Egzotik Ağaç ve Çalıları 1. Chapter 3; Akademik, U., Ed.; Turkish General Directorate of Forestry: Ankara, Turkey, 2014.
- Avcı, M. Türkiye’nin flora bölgeleri ve “Anadolu Diagonali” ne coğrafi bir yaklaşım. Türk Coğrafya Derg. 1993, 28, 225–248. [Google Scholar]
- Aktürk, E.; Güney, K. Vegetation Cover Change Analysis of Phytogeographic Regions of Turkey Based on CORINE Land Cover Datasets from 1990 to 2018. Kast. Univ. J. For. Fac. 2021, 21, 150–164. [Google Scholar] [CrossRef]
- The National Aeronautics and Space Administration. Earth Data ATLAS/ICESat-2 L3A Land and Vegetation Height V005. Available online: https://search.earthdata.nasa.gov/search/granules?p=C2144424132-NSIDC_ECS&pg[0][v]=f&pg[0][gsk]=-start_date&q=icesat%202%20atl08&tl=1661277847.486!3!! (accessed on 25 May 2022).
- FAO. Global Forest Resources Assessment; Country Report; FAO: Rome, Italy, 2014. [Google Scholar]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef] [Green Version]
- Diker, M.M. Orman Amenajmanı Bilgisi; Ankara Yüksek Ziraat Enstitüsü: Ankara, Turkey, 1946; p. 29.
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Bey, A.; Díaz, A.S.-P.; Maniatis, D.; Marchi, G.; Mollicone, D.; Ricci, S.; Bastin, J.-F.; Moore, R.; Federici, S.; Rezende, M.; et al. Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote Sens. 2016, 8, 807. [Google Scholar] [CrossRef] [Green Version]
- Saah, D.; Johnson, G.; Ashmall, B.; Tondapu, G.; Tenneson, K.; Patterson, M.; Poortinga, A.; Markert, K.; Quyen, N.H.; Aung, K.S.; et al. Collect Earth: An online tool for systematic reference data collection in land cover and use applications. Environ. Model. Softw. 2019, 118, 166–171. [Google Scholar] [CrossRef]
- Akturk, E.; Altunel, A.O.; Atesoglu, A.; Seki, M.; Erpay, S. How good is TanDEM-X 50 m forest/non-forest map? Product validation using temporally corrected geo-browser supplied imagery through Collect Earth. Int. J. Geogr. Inf. Sci. 2023, 1–28. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Pinty, B.; Verstraete, M. GEMI: A non-linear index to monitor global vegetation from satellites. Plant Ecol. 1992, 101, 15–20. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Sripada, R.P. Determining in-Season Nitrogen Requirements for Corn Using Aerial Color-Infrared Photography. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2005. [Google Scholar]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space Res. 1998, 22, 689–692. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial Color Infrared Photography for Determining Early In-Season Nitrogen Requirements in Corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Kauth, R.J.; Thomas, G.S. The tasselled cap—A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In LARS Symposia; 1976; p. 159. Available online: http://docs.lib.purdue.edu/lars_symp/159 (accessed on 10 August 2022).
- Crippen, R. Calculating the vegetation index faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Broge, N.; Hasager, C.; Jensen, N.; Schelde, K.; Thomsen, A. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sens. Environ. 2002, 81, 179–193. [Google Scholar] [CrossRef]
- Yang, Z.; Willis, P.; Mueller, R. Impact of band-ratio enhanced AWIFS image to crop classification accuracy. In Proceedings of the Pecora The Future of Land Imaging, Denver, CO, USA, 18–20 November 2008; Volume 17, pp. 1–11. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Goel, N.S.; Qin, W. Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar: A computer simulation. Remote Sens. Rev. 1994, 10, 309–347. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Third ERTS Symposium; NASA: Washington, DC, USA, 1973; pp. 309–317. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Birth, G.S.; McVey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer 1. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Bannari, A.; Asalhi, H.; Teillet, P.M. Transformed difference vegetation index (TDVI) for vegetation cover mapping. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 5, pp. 3053–3055. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Stark, R.; Grits, U.; Rundquist, D.; Kaufman, Y.; Derry, D. Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction. Int. J. Remote Sens. 2002, 23, 2537–2562. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Zhu, X.; Nie, S.; Wang, C.; Xi, X. The Performance of ICESat-2’s Strong and Weak Beams in Estimating Ground Elevation and Forest Height. In Proceedings of the IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 6073–6076. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Magruder, L.; Guenther, E.; Hancock, S.; Purslow, M. Radiometric Assessment of ICESat-2 over Vegetated Surfaces. Remote Sens. 2022, 14, 787. [Google Scholar] [CrossRef]
- Tian, X.; Shan, J. Comprehensive Evaluation of the ICESat-2 ATL08 Terrain Product. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8195–8209. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, P.-F.; Li, Y.; Xie, Y.-Z.; Fu, H.-Q. Accuracy assessment of ICESat-2 ATL08 terrain estimates: A case study in Spain. J. Cent. South Univ. 2022, 29, 226–238. [Google Scholar] [CrossRef]
- Fernandez-Diaz, J.C.; Velikova, M.; Glennie, C.L. Validation of ICESat-2 ATL08 Terrain and Canopy Height Retrievals in Tropical Mesoamerican Forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2956–2970. [Google Scholar] [CrossRef]
- Malambo, L.; Popescu, S. PhotonLabeler: An Inter-Disciplinary Platform for Visual Interpretation and Labeling of ICESat-2 Geolocated Photon Data. Remote Sens. 2020, 12, 3168. [Google Scholar] [CrossRef]
- Kellogg, K.; Hoffman, P.; Standley, S.; Shaffer, S.; Rosen, P.; Edelstein, W.; Dunn, C.; Baker, C.; Barela, P.; Shen, Y.; et al. NASA-ISRO Synthetic Aperture Radar (NISAR) Mission. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–21. [Google Scholar] [CrossRef]
ATL08 Data Group | Data Type | Description |
---|---|---|
latitude | Float | Center latitude of signal photons within each segment |
longitude | Float | Center latitude of signal photons within each segment |
segment_landcover | Integer | Reference landcover for each segment |
n_te_photons | Integer | Number of ground photons within each segment |
n_ca_photons | Integer | Number of canopy photons within each segment |
n_toc_photons | Integer | Number of TOC photons within each segment |
h_canopy | Float | 98% canopy height above terrain |
Canopy Cover Class | Cover Percentage (%) |
---|---|
Sparse Canopy Cover (SCC) | 10–40% |
Moderate Canopy Cover (MCC) | 40–70% |
Dense Canopy Cover (DCC) | 70–100% |
Predicted Canopy Cover Class | |||||||
---|---|---|---|---|---|---|---|
Forest Tree Canopy Cover | Non-Forest Tree Canopy Cover | ||||||
SCC (10–40%) | MCC (40–70%) | DCC (40–100%) | SCC (10–40%) | MCC (40–70%) | DCC (40–100%) | ||
Actual Canopy Cover Class | SCC (10–40%) | 61 | 42 | 27 | 11 | 7 | 5 |
MCC (40–70%) | 6 | 318 | 158 | 1 | 42 | 44 | |
DCC (40–100%) | 1 | 44 | 1008 | 1 | 11 | 97 | |
Less Than 10% | 1 | 0 | 0 | 40 | 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akturk, E.; Popescu, S.C.; Malambo, L. ICESat-2 for Canopy Cover Estimation at Large-Scale on a Cloud-Based Platform. Sensors 2023, 23, 3394. https://doi.org/10.3390/s23073394
Akturk E, Popescu SC, Malambo L. ICESat-2 for Canopy Cover Estimation at Large-Scale on a Cloud-Based Platform. Sensors. 2023; 23(7):3394. https://doi.org/10.3390/s23073394
Chicago/Turabian StyleAkturk, Emre, Sorin C. Popescu, and Lonesome Malambo. 2023. "ICESat-2 for Canopy Cover Estimation at Large-Scale on a Cloud-Based Platform" Sensors 23, no. 7: 3394. https://doi.org/10.3390/s23073394
APA StyleAkturk, E., Popescu, S. C., & Malambo, L. (2023). ICESat-2 for Canopy Cover Estimation at Large-Scale on a Cloud-Based Platform. Sensors, 23(7), 3394. https://doi.org/10.3390/s23073394