Optimal Coverage of Full Frequency Reuse in FFR Networks in Relation to Power Scaling of a Base Station
Abstract
:1. Introduction
2. Preliminaries
2.1. Cellular System Model
2.2. Channel Model
3. Analysis of Full FR Coverage in Relation to Power Scaling of a Base Station
3.1. MISO or MIMO Systems of OSTBC
3.2. MIMO Systems of V-BLAST with a Zero-Forcing Linear Receiver
3.3. SISO Systems
4. Numerical Evaluation
4.1. MISO or MIMO Systems of OSTBC
4.2. MIMO Systems of V-BLAST with a Zero-Forcing Linear Receiver
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soret, B.; Pedersen, K.I.; Jorgensen, N.T.; Fernandez-Lopez, V. Interference coordination for dense wireless networks. IEEE Commun. Mag. 2015, 53, 102–109. [Google Scholar] [CrossRef]
- Namdar, M.; Basgumus, A.; Aldirmaz-Colak, S.; Erdogan, E.; Alakoca, H.; Ustunbas, S.; Durak-Ata, L. Iterative interference alignment with spatial hole sensing in MIMO cognitive radio networks. Ann. Telecommun. 2022, 77, 177–185. [Google Scholar] [CrossRef]
- Kumar, S.; Kalyani, S.; Giridhar, K. Impact of sub-band correlation on SFR and comparison of FFR and SFR. IEEE Trans. Wireless Commun. 2016, 15, 5156–5166. [Google Scholar] [CrossRef]
- Xu, Z.; Li, G.Y.; Yang, C.; Zhu, X. Throughput and optimal threshold for FFR schemes in OFDMA cellular networks. IEEE Trans. Wireless Commun. 2012, 11, 2776–2785. [Google Scholar] [CrossRef]
- Assaad, M. Optimal Fractional Frequency Reuse (FFR) in Multicellular OFDMA System. In Proceedings of the 2008 IEEE 68th Vehicular Technology Conference, Calgary, AB, Canada, 21–24 September 2008. [Google Scholar]
- Novlan, T.; Ganti, R.; Ghosh, A.; Andrews, J. Analytical evaluation of fractional frequency reuse for OFDMA cellular networks. IEEE Trans. Wireless Commun. 2011, 10, 4294–4305. [Google Scholar] [CrossRef]
- Mahmud, A.; Hamdi, K.A. A unified framework for the analysis of fractional frequency reuse techniques. IEEE Trans. Commun. 2014, 62, 3692–3705. [Google Scholar] [CrossRef]
- Liu, L.; Peng, T.; Zhu, P.; Qi, Z.; Wang, W. Analytical Evaluation of Throughput and Coverage for FFR in OFDMA Cellular Network. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016. [Google Scholar]
- Novlan, T.; Andrews, J. Analytical evaluation of uplink fractional frequency reuse. IEEE Trans. Commun. 2013, 61, 2098–2108. [Google Scholar] [CrossRef]
- Lei, H.; Zhang, L.; Zhang, X.; Yang, D. A Novel Multi-Cell OFDMA System Structure Using Fractional Frequency Reuse. In Proceedings of the 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 3–7 September 2007. [Google Scholar]
- Tabassum, H.; Dawy, Z.; Alouini, M.; Yilmaz, F. A generic interference model for uplink OFDMA networks with fractional frequency reuse. IEEE Trans. Veh. Technol. 2014, 63, 1491–1497. [Google Scholar] [CrossRef]
- Jin, F.; Zhang, R.; Hanzo, L. Fractional frequency reuse aided twin-layer femtocell networks: Analysis, design and optimization. IEEE Trans. Commun. 2013, 61, 2074–2085. [Google Scholar] [CrossRef]
- Kumar, S.; Kalyani, S.; Hanzo, L.; Giridhar, K. Coverage probability and achievable rate analysis of FFR-aided multi-user OFDM-based MIMO and SIMO systems. IEEE Trans. Commun. 2015, 63, 3869–3881. [Google Scholar] [CrossRef]
- Kumar, S.; Kalyani, S.; Giridhar, K. Optimal design parameters for coverage probability in fractional frequency reuse and soft frequency reuse. IET Commun. 2015, 9, 1324–1331. [Google Scholar] [CrossRef]
- Novlan, T.; Ganti, R.; Ghosh, A.; Andrews, J. Analytical evaluation of fractional frequency reuse for heterogeneous cellular networks. IEEE Trans. Commun. 2012, 60, 2029–2039. [Google Scholar] [CrossRef]
- Samarasinghe, T.; Inaltekin, H.; Evans, J.S. On the outage capacity of opportunistic beamforming with random user locations. IEEE Trans. Commun. 2014, 62, 3015–3026. [Google Scholar] [CrossRef]
- Dhillon, H.S.; Ganti, R.K.; Baccelli, F.; Andrews, J.G. Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 2012, 30, 550–560. [Google Scholar] [CrossRef]
- Li, Q.; Hu, R.; Xu, Y.; Qian, Y. Optimal fractional frequency reuse and power control in the heterogeneous wireless networks. IEEE Trans. Wireless Commun. 2013, 12, 2658–2668. [Google Scholar] [CrossRef]
- Chandrasekhar, V.; Kountouris, M.; Andrews, J.G. Coverage in multi-antenna two-tier networks. IEEE Trans. Wireless Commun. 2009, 8, 5314–5327. [Google Scholar] [CrossRef]
- Al-Rimawi, A.; Dardari, D. Analytical Modeling of D2D Communications over Cellular Networks. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015. [Google Scholar]
- Chang, S.-H.; Kim, S.-H.; Choi, J.P. The optimal distance threshold for fractional frequency reuse in size-scalable networks. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 527–546. [Google Scholar] [CrossRef]
- Chang, S.-H.; Park, H.-G.; Kim, S.-H.; Choi, J.P. Study on coverage of full frequency reuse in FFR systems based on outage probability. IEEE Trans. Commun. 2018, 66, 5828–5843. [Google Scholar] [CrossRef]
- Chang, S.-H.; Park, H.-G.; Kim, S.-H.; Choi, J.P. Study on the Coverage of Fractional Frequency Reuse Cells. In Proceedings of the Information Theory and Applications Workshop (ITA), San Diego, CA, USA, 12–17 February 2017. [Google Scholar]
- Louie, R.; McKay, M.; Collings, I. Open-loop spatial multiplexing and diversity communications in ad hoc networks. IEEE Trans. Inf. Theory 2011, 57, 317–344. [Google Scholar] [CrossRef]
- Stolyar, A.L.; Viswanathan, H. Self-Organizing Dynamic Fractional Frequency Reuse for Best-Effort Traffic through Distributed Inter-Cell Coordination. In Proceedings of the IEEE INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009. [Google Scholar]
- Chandrasekharan, S.; Gomez, K.; Al-Hourani, A.; Kandeepan, S.; Rasheed, T.; Goratti, L.; Reynaud, L.; Grace, D.; Bucaille, I.; Wirth, T.; et al. Designing and implementing future aerial communication networks. IEEE Commun. Mag. 2016, 54, 26–34. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Xu, S.; Li, G.Y. Fundamental trade-offs on green wireless networks. IEEE Commun. Mag. 2011, 49, 30–37. [Google Scholar] [CrossRef]
- Oestges, C.; Clerckx, B. MIMO Wireless Communications: From Real Word Propagation to Space-Time Code Design; Academic: Orlando, FL, USA, 2007. [Google Scholar]
- Larsson, E.G.; Stoica, P. Space-Time Block Coding for Wireless Communications; Cambridge University Press: London, UK, 2008. [Google Scholar]
- Lozano, A.; Jindal, N. Transmit diversity vs. spatial multiplexing in modern MIMO systems. IEEE Trans. Wireless Commun. 2010, 9, 186–197. [Google Scholar] [CrossRef]
- Kumar, K.R.; Caire, G.; Moustakas, A.L. Asymptotic performance of linear receivers in MIMO fading channels. IEEE Trans. Inf. Theory 2009, 55, 4398–4418. [Google Scholar] [CrossRef]
- Paulraj, A.; Nabar, R.; Gore, D. Introduction to Space-Time Wireless Communications; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Chang, S.-H.; Cosman, P.C.; Milstein, L.B. Optimal transmission of progressive sources based on the error probability analysis of SM and OSTBC. IEEE Trans. Veh. Technol. 2014, 63, 94–106. [Google Scholar] [CrossRef]
- Hedayat, A.; Nosratinia, A. Outage and diversity of linear receivers in flat-fading MIMO channels. IEEE Trans. Signal Process. 2007, 55, 5868–5873. [Google Scholar] [CrossRef]
- Guess, T.; Zhang, H.; Kotchiev, T.V. The Outage Capacity of BLAST for MIMO Channels. In Proceedings of the IEEE International Conference on Communications, Anchorage, AK, USA, 11–15 May 2003; pp. 2628–2632. [Google Scholar]
- Prasad, N.; Varanasi, M.K. Outage Analysis and Optimization for Multiaccess and V-BLAST Architecture over MIMO Rayleigh Fading Channels. In Proceedings of the Annual Allerton Conference on Communication Control and Computing, Monticello, IL, USA, 1–5 October 2003. [Google Scholar]
- Chang, S.-H.; Park, H.-G.; Choi, J.W.; Choi, J.P. Scalable source transmission with unequal frequency reuse in MIMO cellular networks. IEEE Trans. Commun. 2017, 65, 4188–4204. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, M.; Chang, S.-H.; Lee, J.-M.; Kim, K.-H.; Park, H.; Kim, S.-H. Optimal Coverage of Full Frequency Reuse in FFR Networks in Relation to Power Scaling of a Base Station. Sensors 2023, 23, 8925. https://doi.org/10.3390/s23218925
Seo M, Chang S-H, Lee J-M, Kim K-H, Park H, Kim S-H. Optimal Coverage of Full Frequency Reuse in FFR Networks in Relation to Power Scaling of a Base Station. Sensors. 2023; 23(21):8925. https://doi.org/10.3390/s23218925
Chicago/Turabian StyleSeo, Minyoung, Seok-Ho Chang, Jong-Man Lee, Ki-Hun Kim, Hyun Park, and Sang-Hyo Kim. 2023. "Optimal Coverage of Full Frequency Reuse in FFR Networks in Relation to Power Scaling of a Base Station" Sensors 23, no. 21: 8925. https://doi.org/10.3390/s23218925
APA StyleSeo, M., Chang, S.-H., Lee, J.-M., Kim, K.-H., Park, H., & Kim, S.-H. (2023). Optimal Coverage of Full Frequency Reuse in FFR Networks in Relation to Power Scaling of a Base Station. Sensors, 23(21), 8925. https://doi.org/10.3390/s23218925