Four Days Are Enough to Provide a Reliable Daily Step Count in Mild to Moderate Parkinson’s Disease through a Commercial Smartwatch
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Reliability of Smartwatch-Based Average Daily Steps in PD Patients
4.2. Difference in Daily Steps across Days and between Working and Weekend Days
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA 2020, 323, 548–560. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A.E. Parkinson Disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Noh, Y.; Youm, C.; Kim, S.; Park, H.; Noh, B.; Kim, B.; Choi, H.; Yoon, H. Estimating Health-Related Quality of Life Based on Demographic Characteristics, Questionnaires, Gait Ability, and Physical Fitness in Korean Elderly Adults. Int. J. Environ. Res. Public Health 2021, 18, 11816. [Google Scholar] [CrossRef]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait Speed and Survival in Older Adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Paluch, A.E.; Bajpai, S.; Bassett, D.R.; Carnethon, M.R.; Ekelund, U.; Evenson, K.R.; Galuska, D.A.; Jefferis, B.J.; Kraus, W.E.; Lee, I.-M.; et al. Daily Steps and All-Cause Mortality: A Meta-Analysis of 15 International Cohorts. Lancet Public Health 2022, 7, e219–e228. [Google Scholar] [CrossRef] [PubMed]
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait Impairments in Parkinson’s Disease. Lancet Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef]
- Maggioni, M.A.; Veicsteinas, A.; Rampichini, S.; Cè, E.; Nemni, R.; Riboldazzi, G.; Merati, G. Energy Cost of Spontaneous Walking in Parkinson’s Disease Patients. Neurol. Sci. 2012, 33, 779–784. [Google Scholar] [CrossRef]
- Walton, C.C.; Shine, J.M.; Hall, J.M.; O’Callaghan, C.; Mowszowski, L.; Gilat, M.; Szeto, J.Y.Y.; Naismith, S.L.; Lewis, S.J.G. The Major Impact of Freezing of Gait on Quality of Life in Parkinson’s Disease. J. Neurol. 2015, 262, 108–115. [Google Scholar] [CrossRef]
- Creaby, M.W.; Cole, M.H. Gait Characteristics and Falls in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Park. Relat. Disord. 2018, 57, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R.; Toth, L.P.; LaMunion, S.R.; Crouter, S.E. Step Counting: A Review of Measurement Considerations and Health-Related Applications. Sports Med. 2017, 47, 1303–1315. [Google Scholar] [CrossRef]
- Paluch, A.E.; Gabriel, K.P.; Fulton, J.E.; Lewis, C.E.; Schreiner, P.J.; Sternfeld, B.; Sidney, S.; Siddique, J.; Whitaker, K.M.; Carnethon, M.R. Steps per Day and All-Cause Mortality in Middle-Aged Adults in the Coronary Artery Risk Development in Young Adults Study. JAMA Netw. Open 2021, 4, e2124516. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Tsugawa, Y.; Mayeda, E.R.; Ritz, B. Association of Daily Step Patterns with Mortality in US Adults. JAMA Netw. Open 2023, 6, e235174. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-M.; Shiroma, E.J.; Kamada, M.; Bassett, D.R.; Matthews, C.E.; Buring, J.E. Association of Step Volume and Intensity with All-Cause Mortality in Older Women. JAMA Intern. Med. 2019, 179, 1105–1112. [Google Scholar] [CrossRef]
- Saint-Maurice, P.F.; Troiano, R.P.; Bassett, D.R.; Graubard, B.I.; Carlson, S.A.; Shiroma, E.J.; Fulton, J.E.; Matthews, C.E. Association of Daily Step Count and Step Intensity with Mortality Among US Adults. JAMA 2020, 323, 1151–1160. [Google Scholar] [CrossRef]
- Del Pozo Cruz, B.; Ahmadi, M.N.; Lee, I.-M.; Stamatakis, E. Prospective Associations of Daily Step Counts and Intensity with Cancer and Cardiovascular Disease Incidence and Mortality and All-Cause Mortality. JAMA Intern. Med. 2022, 182, 1139–1148. [Google Scholar] [CrossRef]
- Del Pozo Cruz, B.; Ahmadi, M.; Naismith, S.L.; Stamatakis, E. Association of Daily Step Count and Intensity with Incident Dementia in 78,430 Adults Living in the UK. JAMA Neurol. 2022, 79, 1059–1063. [Google Scholar] [CrossRef]
- Skidmore, F.M.; Mackman, C.A.; Pav, B.; Shulman, L.M.; Garvan, C.; Macko, R.F.; Heilman, K.M. Daily Ambulatory Activity Levels in Idiopathic Parkinson Disease. J. Rehabil. Res. Dev. 2008, 45, 1343–1348. [Google Scholar] [CrossRef]
- Mantri, S.; Wood, S.; Duda, J.E.; Morley, J.F. Comparing Self-Reported and Objective Monitoring of Physical Activity in Parkinson Disease. Park. Relat. Disord. 2019, 67, 56–59. [Google Scholar] [CrossRef]
- Bianchini, E.; Maetzler, W. Wearable Systems in Movement Disorders. In International Review of Movement Disorders; Academic Press: Cambridge, MA, USA, 2023. [Google Scholar]
- Bate, G.L.; Kirk, C.; Rehman, R.Z.U.; Guan, Y.; Yarnall, A.J.; Del Din, S.; Lawson, R.A. The Role of Wearable Sensors to Monitor Physical Activity and Sleep Patterns in Older Adult Inpatients: A Structured Review. Sensors 2023, 23, 4881. [Google Scholar] [CrossRef]
- Soulard, J.; Carlin, T.; Knitza, J.; Vuillerme, N. Wearables for Measuring the Physical Activity and Sedentary Behavior of Patients with Axial Spondyloarthritis: Systematic Review. JMIR Mhealth Uhealth 2022, 10, e34734. [Google Scholar] [CrossRef]
- Correno, M.B.; Hansen, C.; Carlin, T.; Vuillerme, N. Objective Measurement of Walking Activity Using Wearable Technologies in People with Parkinson Disease: A Systematic Review. Sensors 2022, 22, 4551. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, E.; Caliò, B.; Alborghetti, M.; Rinaldi, D.; Hansen, C.; Vuillerme, N.; Maetzler, W.; Pontieri, F.E. Step-Counting Accuracy of a Commercial Smartwatch in Mild-to-Moderate PD Patients and Effect of Spatiotemporal Gait Parameters, Laterality of Symptoms, Pharmacological State, and Clinical Variables. Sensors 2022, 23, 214. [Google Scholar] [CrossRef]
- Kim, D.W.; Hassett, L.M.; Nguy, V.; Allen, N.E. A Comparison of Activity Monitor Data from Devices Worn on the Wrist and the Waist in People with Parkinson’s Disease. Mov. Disord. Clin. Pract. 2019, 6, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Wendel, N.; Macpherson, C.E.; Webber, K.; Hendron, K.; DeAngelis, T.; Colon-Semenza, C.; Ellis, T. Accuracy of Activity Trackers in Parkinson Disease: Should We Prescribe Them? Phys. Ther. 2018, 98, 705–714. [Google Scholar] [CrossRef]
- Ginis, P.; Goris, M.; De Groef, A.; Blondeel, A.; Gilat, M.; Demeyer, H.; Troosters, T.; Nieuwboer, A. Validation of Commercial Activity Trackers in Everyday Life of People with Parkinson’s Disease. Sensor 2023, 23, 4156. [Google Scholar] [CrossRef]
- Kang, M.; Bassett, D.R.; Barreira, T.V.; Tudor-Locke, C.; Ainsworth, B.; Reis, J.P.; Strath, S.; Swartz, A. How Many Days Are Enough? A Study of 365 Days of Pedometer Monitoring. Res. Q. Exerc. Sport 2009, 80, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Tan, C.S.; Lim, N.; Tan, J.; Chen, C.; Müller-Riemenschneider, F. Number of Daily Measurements Needed to Estimate Habitual Step Count Levels Using Wrist-Worn Trackers and Smartphones in 212,048 Adults. Sci. Rep. 2021, 11, 9633. [Google Scholar] [CrossRef]
- Clemes, S.A.; Griffiths, P.L. How Many Days of Pedometer Monitoring Predict Monthly Ambulatory Activity in Adults? Med. Sci. Sports Exerc. 2008, 40, 1589–1595. [Google Scholar] [CrossRef]
- Sigmundová, D.; Vašíčková, J.; Stelzer, J.; Repka, E. The Influence of Monitoring Interval on Data Measurement: An Analysis of Step Counts of University Students. Int. J. Environ. Res. Public Health 2013, 10, 515–527. [Google Scholar] [CrossRef]
- Hart, T.L.; Swartz, A.M.; Cashin, S.E.; Strath, S.J. How Many Days of Monitoring Predict Physical Activity and Sedentary Behaviour in Older Adults? Int. J. Behav. Nutr. Phys. Act. 2011, 8, 62. [Google Scholar] [CrossRef]
- van Schooten, K.S.; Rispens, S.M.; Elders, P.J.; Lips, P.; van Dieën, J.H.; Pijnappels, M. Assessing Physical Activity in Older Adults: Required Days of Trunk Accelerometer Measurements for Reliable Estimation. J. Aging Phys. Act. 2015, 23, 9–17. [Google Scholar] [CrossRef]
- Norris, M.; Anderson, R.; Motl, R.W.; Hayes, S.; Coote, S. Minimum Number of Days Required for a Reliable Estimate of Daily Step Count and Energy Expenditure, in People with MS Who Walk Unaided. Gait Posture 2017, 53, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Fini, N.A.; Burge, A.T.; Bernhardt, J.; Holland, A.E. Two Days of Measurement Provides Reliable Estimates of Physical Activity Poststroke: An Observational Study. Arch. Phys. Med. Rehabil. 2019, 100, 883–890. [Google Scholar] [CrossRef]
- Paul, S.S.; Ellis, T.D.; Dibble, L.E.; Earhart, G.M.; Ford, M.P.; Foreman, K.B.; Cavanaugh, J.T. Obtaining Reliable Estimates of Ambulatory Physical Activity in People with Parkinson’s Disease. J. Park. Dis. 2016, 6, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Hergenroeder, A.L.; Barone Gibbs, B.; Kotlarczyk, M.P.; Kowalsky, R.J.; Perera, S.; Brach, J.S. Accuracy of Objective Physical Activity Monitors in Measuring Steps in Older Adults. Gerontol. Geriatr. Med. 2018, 4, 2333721418781126. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.E.R.; Dodds, R.; Bacon, D.; Sayer, A.A.; Roberts, H.C. Physical Activity among Hospitalised Older People: Insights from Upper and Lower Limb Accelerometry. Aging Clin. Exp. Res. 2018, 30, 1363–1369. [Google Scholar] [CrossRef]
- Rousham, E.K.; Clarke, P.E.; Gross, H. Significant Changes in Physical Activity among Pregnant Women in the UK as Assessed by Accelerometry and Self-Reported Activity. Eur. J. Clin. Nutr. 2006, 60, 393–400. [Google Scholar] [CrossRef]
- Artese, A.L.; Rawat, R.; Sung, A.D. The Use of Commercial Wrist-Worn Technology to Track Physiological Outcomes in Behavioral Interventions. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 534–540. [Google Scholar] [CrossRef]
- Germini, F.; Noronha, N.; Borg Debono, V.; Abraham Philip, B.; Pete, D.; Navarro, T.; Keepanasseril, A.; Parpia, S.; de Wit, K.; Iorio, A. Accuracy and Acceptability of Wrist-Wearable Activity-Tracking Devices: Systematic Review of the Literature. J. Med. Internet Res. 2022, 24, e30791. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS Clinical Diagnostic Criteria for Parkinson’s Disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef]
- Goetz, C.G.; Poewe, W.; Rascol, O.; Sampaio, C.; Stebbins, G.T.; Counsell, C.; Giladi, N.; Holloway, R.G.; Moore, C.G.; Wenning, G.K.; et al. Movement Disorder Society Task Force Report on the Hoehn and Yahr Staging Scale: Status and Recommendations. Mov. Disord. 2004, 19, 1020–1028. [Google Scholar] [CrossRef]
- Jost, S.T.; Kaldenbach, M.-A.; Antonini, A.; Martinez-Martin, P.; Timmermann, L.; Odin, P.; Katzenschlager, R.; Borgohain, R.; Fasano, A.; Stocchi, F.; et al. Levodopa Dose Equivalency in Parkinson’s Disease: Updated Systematic Review and Proposals. Mov. Disord. 2023, 38, 1236–1252. [Google Scholar] [CrossRef]
- Vívosmart 4—Introduction. Available online: https://www8.garmin.com/manuals/webhelp/vivosmart4/EN-US/GUID-8B9070D6-C0EA-45EE-8F62-1602492BF264.html (accessed on 13 September 2023).
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Lexell, J.E.; Downham, D.Y. How to Assess the Reliability of Measurements in Rehabilitation. Am. J. Phys. Med. Rehabil. 2005, 84, 719–723. [Google Scholar] [CrossRef]
- Pedersen, B.S.; Kristensen, M.T.; Josefsen, C.O.; Lykkegaard, K.L.; Jønsson, L.R.; Pedersen, M.M. Validation of Two Activity Monitors in Slow and Fast Walking Hospitalized Patients. Rehabil. Res. Pract. 2022, 2022, 9230081. [Google Scholar] [CrossRef]
- Schmidt, A.L.; Pennypacker, M.L.; Thrush, A.H.; Leiper, C.I.; Craik, R.L. Validity of the StepWatch Step Activity Monitor: Preliminary Findings for Use in Persons with Parkinson Disease and Multiple Sclerosis. J. Geriatr. Phys. Ther. 2011, 34, 41–45. [Google Scholar] [CrossRef]
- Mudge, S.; Stott, N.S.; Walt, S.E. Criterion Validity of the StepWatch Activity Monitor as a Measure of Walking Activity in Patients after Stroke. Arch. Phys. Med. Rehabil. 2007, 88, 1710–1715. [Google Scholar] [CrossRef]
- Lee, J.A.; Laurson, K.R. Validity of the SenseWear Armband Step Count Measure during Controlled and Free-Living Conditions. J. Exerc. Sci. Fit. 2015, 13, 16–23. [Google Scholar] [CrossRef]
- Fokkema, T.; Kooiman, T.J.M.; Krijnen, W.P.; VAN DER Schans, C.P.; DE Groot, M. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed. Med. Sci. Sports Exerc. 2017, 49, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Svarre, F.R.; Jensen, M.M.; Nielsen, J.; Villumsen, M. The Validity of Activity Trackers Is Affected by Walking Speed: The Criterion Validity of Garmin Vivosmart® HR and StepWatchTM 3 for Measuring Steps at Various Walking Speeds under Controlled Conditions. PeerJ 2020, 8, e9381. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.J.; Thom, J.M.; Wewege, M.A.; Ward, R.E.; Parmenter, B.J. Accuracy of Step Count Measured by Physical Activity Monitors: The Effect of Gait Speed and Anatomical Placement Site. Gait Posture 2017, 57, 199–203. [Google Scholar] [CrossRef]
- Lamont, R.M.; Daniel, H.L.; Payne, C.L.; Brauer, S.G. Accuracy of Wearable Physical Activity Trackers in People with Parkinson’s Disease. Gait Posture 2018, 63, 104–108. [Google Scholar] [CrossRef]
- Jankovic, J. Motor Fluctuations and Dyskinesias in Parkinson’s Disease: Clinical Manifestations. Mov. Disord. 2005, 20 (Suppl. S11), S11–S16. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.; Ortlieb, C.; Romijnders, R.; Warmerdam, E.; Welzel, J.; Geritz, J.; Maetzler, W. Reliability of IMU-Derived Temporal Gait Parameters in Neurological Diseases. Sensors 2022, 22, 2304. [Google Scholar] [CrossRef]
- Benka Wallén, M.; Franzén, E.; Nero, H.; Hagströmer, M. Levels and Patterns of Physical Activity and Sedentary Behavior in Elderly People with Mild to Moderate Parkinson Disease. Phys. Ther. 2015, 95, 1135–1141. [Google Scholar] [CrossRef]
- Lord, S.; Godfrey, A.; Galna, B.; Mhiripiri, D.; Burn, D.; Rochester, L. Ambulatory Activity in Incident Parkinson’s: More than Meets the Eye? J. Neurol. 2013, 260, 2964–2972. [Google Scholar] [CrossRef]
- Christiansen, C.; Moore, C.; Schenkman, M.; Kluger, B.; Kohrt, W.; Delitto, A.; Berman, B.; Hall, D.; Josbeno, D.; Poon, C.; et al. Factors Associated With Ambulatory Activity in De Novo Parkinson Disease. J. Neurol. Phys. Ther. 2017, 41, 93–100. [Google Scholar] [CrossRef]
- Almeida, G.J.M.; Wasko, M.C.M.; Jeong, K.; Moore, C.G.; Piva, S.R. Physical Activity Measured by the SenseWear Armband in Women with Rheumatoid Arthritis. Phys. Ther. 2011, 91, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W.; Zhu, W.; Park, Y.; McAuley, E.; Scott, J.A.; Snook, E.M. Reliability of Scores from Physical Activity Monitors in Adults with Multiple Sclerosis. Adapt. Phys. Act. Q. 2007, 24, 245–253. [Google Scholar] [CrossRef]
- Matthews, C.E.; Ainsworth, B.E.; Thompson, R.W.; Bassett, D.R. Sources of Variance in Daily Physical Activity Levels as Measured by an Accelerometer. Med. Sci. Sports Exerc. 2002, 34, 1376–1381. [Google Scholar] [CrossRef]
- Martikainen, K.K.; Luukkaala, T.H.; Marttila, R.J. Parkinson’s Disease and Working Capacity. Mov. Disord. 2006, 21, 2187–2191. [Google Scholar] [CrossRef] [PubMed]
- Koerts, J.; König, M.; Tucha, L.; Tucha, O. Working Capacity of Patients with Parkinson’s Disease—A Systematic Review. Park. Relat. Disord. 2016, 27, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Hamer, M.; Ucci, M.; Marmot, A.; Gardner, B.; Sawyer, A.; Wardle, J.; Fisher, A. Weekday and Weekend Patterns of Objectively Measured Sitting, Standing, and Stepping in a Sample of Office-Based Workers: The Active Buildings Study. BMC Public Health 2015, 15, 9. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Wen, F.; Metzger, J.S.; Herring, A.H. Physical Activity and Sedentary Behavior Patterns Using Accelerometry from a National Sample of United States Adults. Int. J. Behav. Nutr. Phys. Act 2015, 12, 20. [Google Scholar] [CrossRef] [PubMed]
PD Patients (N = 56) | ||
---|---|---|
Age (years) | 69.5 ± 7.8 | |
Retired | 44 (79%) | |
Height (cm) | 174 ± 7.6 | |
Weight (kg) | 79.0 ± 13.0 | |
BMI (kg/m2) | 26.2 ± 3.8 | |
Sex | M | 43 (77%) |
F | 13 (23%) | |
Disease duration (years) | 7.1 ± 4.7 | |
LEDD (mg) | 604 ± 325 | |
mHY | 2 (2–2.5) | |
Motor complications | 15 (27%) | |
MDS-UPDRS-III | 29 (23–32) |
PD Patients (N = 56) | ||
---|---|---|
Steps day 1 | 6858 ± 4230 | |
Steps day 2 | 6280 ± 4094 | |
Steps day 3 | 5203 ± 3034 | F2,272 = 1.997; p = 0.095 a |
Steps day 4 | 5401 ± 3411 | |
Steps day 5 | 5520 ± 3436 | |
Working days | 5805 ± 3693 | W = 9051.52; p = 0.774 b |
Weekend days | 5932 ± 3719 | |
Average daily steps | 5861 ± 3086 |
Combinations of Days | ICC (3,k) | Bland–Altmann Statistics | SEM (SEM%) | MDC95 (MDC95%) |
---|---|---|---|---|
Days 1-2 | 0.85 (0.74–0.91) | −707.9 (−3340.2; 1924.4) | 1510 (25.8) | 4185 (71.4) |
Days 1-3 | 0.71 (0.51–0.83) | −169.3 (−2337.2; 1998.6) | 1109 (18.9) | 3074 (52.5) |
Days 1-4 | 0.62 (0.35–0.78) | −269.3 (−2195.3; 1656.7) | 1010 (17.2) | 2801 (47.8) |
Days 1-5 | 0.83 (0.70–0.90) | −361.1 (−3245.7; 2523.6) | 1503 (25.6) | 4165 (71.1) |
Days 2-3 | 0.82 (0.69–0.89) | 119.8 (−1829.7; 2069.3) | 993 (16.9) | 2752 (47.0) |
Days 2-4 | 0.80 (0.66–0.88) | 15.6 (−2312.2; 2343.4) | 1177 (20.1) | 3263 (55.7) |
Days 2-5 | 0.86 (0.76–0.92) | −76.3 (−2353.2; 2200.7) | 1154 (19.7) | 3198 (54.6) |
Days 3-4 | 0.83 (0.72–0.90) | 578.3 (−2492.3; 3648.8) | 1657 (28.3) | 4592 (78.4) |
Days 3-5 | 0.72 (0.51–0.84) | 508.4 (−1488.0; 2504.8) | 1130 (19.3) | 3133 (53.5) |
Days 4-5 | 0.67 (0.42–0.81) | 368.3 (−1844.4; 2581.0) | 1337 (22.8) | 3705 (63.2) |
Days 1-2-3 | 0.86 (0.78–0.91) | −252.5 (−1678.8; 1173.9) | 764 (13.0) | 2118 (36.1) |
Days 1-2-4 | 0.83 (0.74–0.90) | −320.5 (−1609.8; 968.7) | 726 (12.4) | 2014 (34.4) |
Days 1-2-5 | 0.89 (0.83–0.93) | −381.7 (−2422.9; 1659.4) | 1100 (18.8) | 3050 (52.0) |
Days 1-3-4 | 0.79 (0.67–0.87) | 46.6 (−1466.6; 1559.8) | 767 (13.1) | 2125 (36.3) |
Days 1-3-5 | 0.82 (0.72–0.89) | −7.3 (−1565.0; 1553.4) | 789 (13.5) | 2187 (37.3) |
Days 1-4-5 | 0.79 (0.67–0.87) | −93.0 (−1413.5; 1227.4) | 674 (11.5) | 1869 (31.9) |
Days 2-3-4 | 0.87 (0.80–0.92) | 237.9 (−1685.2; 2161.0) | 1001 (17.1) | 2775 (47.3) |
Days 2-3-5 | 0.86 (0.79–0.92) | 184.0 (−1112.1; 1480.0) | 681 (11.6) | 1887 (32.2) |
Days 2-4-5 | 0.85 (0.76–0.91) | 94.1 (−1394.5; 1582.6) | 758 (12.9) | 2102 (35.9) |
Days 3-4-5 | 0.81 (0.70–0.88) | 492.6 (−1288.0; 2273.1) | 1026 (17.5) | 2845 (48.5) |
Days 1-2-3-4 | 0.87 (0.81–0.92) | −72.1 (−968.0; 823.7) | 459 (7.8) | 1271 (21.7) |
Days 1-2-3-5 | 0.89 (0.84–0.93) | −114.4 (−1177.9; 949.1) | 550 (9.4) | 1524 (26.0) |
Days 1-2-4-5 | 0.88 (0.81–0.92) | −175.3 (−1068.2; 717.6) | 484 (8.3) | 1342 (22.9) |
Days 1-3-4-5 | 0.84 (0.76–0.90) | 109.7 (−717.1; 936.5) | 432 (7.4) | 1198 (20.4) |
Days 2-3-4-5 | 0.88 (0.82–0.93) | 252.1 (−879.4; 1383.6) | 539 (9.2) | 1495 (25.5) |
Days 1-2-3-4-5 | 0.90 (0.85–0.94) | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchini, E.; Galli, S.; Alborghetti, M.; De Carolis, L.; Zampogna, A.; Hansen, C.; Vuillerme, N.; Suppa, A.; Pontieri, F.E. Four Days Are Enough to Provide a Reliable Daily Step Count in Mild to Moderate Parkinson’s Disease through a Commercial Smartwatch. Sensors 2023, 23, 8971. https://doi.org/10.3390/s23218971
Bianchini E, Galli S, Alborghetti M, De Carolis L, Zampogna A, Hansen C, Vuillerme N, Suppa A, Pontieri FE. Four Days Are Enough to Provide a Reliable Daily Step Count in Mild to Moderate Parkinson’s Disease through a Commercial Smartwatch. Sensors. 2023; 23(21):8971. https://doi.org/10.3390/s23218971
Chicago/Turabian StyleBianchini, Edoardo, Silvia Galli, Marika Alborghetti, Lanfranco De Carolis, Alessandro Zampogna, Clint Hansen, Nicolas Vuillerme, Antonio Suppa, and Francesco E. Pontieri. 2023. "Four Days Are Enough to Provide a Reliable Daily Step Count in Mild to Moderate Parkinson’s Disease through a Commercial Smartwatch" Sensors 23, no. 21: 8971. https://doi.org/10.3390/s23218971
APA StyleBianchini, E., Galli, S., Alborghetti, M., De Carolis, L., Zampogna, A., Hansen, C., Vuillerme, N., Suppa, A., & Pontieri, F. E. (2023). Four Days Are Enough to Provide a Reliable Daily Step Count in Mild to Moderate Parkinson’s Disease through a Commercial Smartwatch. Sensors, 23(21), 8971. https://doi.org/10.3390/s23218971