Pressure-Sensitive Capability of AgNPs Self-Sensing Cementitious Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Specimen Preparation
2.3. Test Methods and Evaluation Indicators
2.3.1. Test Methods
2.3.2. Analyzing Indicators
3. Test Results and Analysis
3.1. Absorbance of AgNPs
3.2. On Initial Resistance Affected by Water Content and Filler Dose
3.2.1. Influence of Moisture Content
3.2.2. Percolation Threshold
3.3. Equal Amplitude Long-Cycle Loading
3.3.1. Loading Results
3.3.2. Fitting Analysis of Loading Results
3.3.3. Discussion
3.4. Results and Analysis of Variable Amplitude Loading Tests
3.4.1. Loading Results
3.4.2. Discussion
3.5. Analysis of the Application Effect of AgNPs
4. Summary and Conclusions
- At equivalent concentrations, AgNPs exhibited 1.15 to 9 times greater dispersibility in aqueous systems compared to conventional conductive fillers.
- The percolation threshold of AgNPs in the cement matrix was determined to be 0.0066 wt% through polarization testing on five sets of specimens.
- Long-term cyclic loading tests, both of equal and variable amplitude, revealed that self-sensing cementitious materials with 0.0066 wt% AgNPs exhibited optimal pressure-sensitive stability. The change in fractional change resistance (ΔFCR) reached up to 41.92%, and the maximum value of the stress sensitivity (SS) was as high as 11.736.
- The utilization of AgNPs leads to a significant reduction in the quantity of conductive filler by approximately 90% or more. Their minute size and extremely high numbers contribute to a substantial increase in the number of conductive pathways within cementitious composite systems, thereby ensuring the stability of the pressure-sensitive effect.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, W.; Li, W.; Tao, Z.; Wang, K. Piezoresistive properties of cement-based sensors: Review and perspective. Constr. Build. Mater. 2019, 203, 146–163. [Google Scholar] [CrossRef]
- Umar, T.; Yousaf, M.; Akbar, M.; Abbas, N.; Hussain, Z.; Ansari, W.S. An experimental study on non-destructive evaluation of the mechanical characteristics of a sustainable concrete incorporating industrial waste. Materials 2022, 15, 7346. [Google Scholar] [CrossRef] [PubMed]
- Dinesh, A.; Sudharsan, S.; Haribala, S. Self-sensing cement-based sensor with carbon nanotube: Fabrication and properties—A review. Mater. Today Proc. 2021, 46, 5801–5807. [Google Scholar] [CrossRef]
- Chung, D. A critical review of electrical-resistance-based self-sensing in conductive cement-based materials. Carbon 2023, 203, 311–325. [Google Scholar] [CrossRef]
- Dinesh, A.; Suji, D.; Pichumani, M. Electro-mechanical investigations of steel fiber reinforced self-sensing cement composite and their implications for real-time structural health monitoring. J. Build. Eng. 2022, 51, 104343. [Google Scholar]
- Ding, S.; Xiang, Y.; Ni, Y.-Q.; Thakur, V.K.; Wang, X.; Han, B.; Ou, J. In-situ synthesizing carbon nanotubes on cement to develop self-sensing cementitious composites for smart high-speed rail infrastructures. Nano Today 2022, 43, 101438. [Google Scholar] [CrossRef]
- Sevim, O.; Jiang, Z.; Ozbulut, O.E. Effects of graphene nanoplatelets type on self-sensing properties of cement mortar composites. Constr. Build. Mater. 2022, 359, 129488. [Google Scholar] [CrossRef]
- Suchorzewski, J.; Prieto, M.; Mueller, U. An experimental study of self-sensing concrete enhanced with multi-wall carbon nanotubes in wedge splitting test and DIC. Constr. Build. Mater. 2020, 262, 120871. [Google Scholar] [CrossRef]
- Jawed Roshan, M.; Abedi, M.; Gomes Correia, A.; Fangueiro, R. Application of self-sensing cement-stabilized sand for damage detection. Constr. Build. Mater. 2023, 403, 133080. [Google Scholar] [CrossRef]
- Han, B.; Yu, X.; Zhang, K.; Kwon, E.; Ou, J. Sensing properties of CNT-filled cement-based stress sensors. J. Civ. Struct. Health Monit. 2011, 1, 17–24. [Google Scholar] [CrossRef]
- Xu, F.; Zhou, J.; Chang, R.; Zhang, D.; Wang, H.; Tian, X. The Mechanical and Self-Sensing Performance of Reactive Powder Cement Concrete with Nano-Stainless Steel Powder. Coatings 2023, 13, 1153. [Google Scholar] [CrossRef]
- Bekzhanova, Z.; Memon, S.A.; Kim, J.R. Self-Sensing Cementitious Composites: Review and Perspective. Nanomaterials 2021, 11, 2355. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.; Georgaklis, J.; Ams, M.; Patabendigedara, S.; Belford, A.; Wu, S. Smart self-sensing concrete: The use of multiscale carbon fillers. J. Mater. Sci. 2022, 57, 2667–2682. [Google Scholar] [CrossRef]
- Li, W.; Dong, W.; Castel, A.; Sheng, D. Self-Sensing Cement-Based Sensors for Structural Health Monitoring toward Smart Infrastructure. In Journal and Proceedings of the Royal Society of New South Wales; Royal Society of New South Wales: Sydney, Australia, 2021; pp. 24–32. [Google Scholar]
- Sasmal, S.; Ravivarman, N.; Sindu, B.S.; Vignesh, K. Electrical conductivity and piezo-resistive characteristics of CNT and CNF incorporated cementitious nanocomposites under static and dynamic loading. Compos. Part A Appl. Sci. Manuf. 2017, 100, 227–243. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; You, I.; Zi, G.; Lee, S.-J. Effects of carbon nanomaterial type and amount on self-sensing capacity of cement paste. Measurement 2019, 134, 750–761. [Google Scholar] [CrossRef]
- Wang, H.; Shi, F.; Shen, J.; Zhang, A.; Zhang, L.; Huang, H.; Liu, J.; Jin, K.; Feng, L.; Tang, Z. Research on the self-sensing and mechanical properties of aligned stainless steel fiber-reinforced reactive powder concrete. Cem. Concr. Compos. 2021, 119, 104001. [Google Scholar] [CrossRef]
- Reddy, P.N.; Kavyateja, B.V.; Jindal, B.B. Structural health monitoring methods, dispersion of fibers, micro and macro structural properties, sensing, and mechanical properties of self-sensing concrete—A review. Struct. Concr. 2021, 22, 793–805. [Google Scholar] [CrossRef]
- Dinesh, A.; Suji, D.; Pichumani, M. Real-time implication of hybrid carbonaceous fibre and powder integrated self-sensing cement composite in health monitoring of beams and columns. Eur. J. Environ. Civ. Eng. 2023, 27, 1–18. [Google Scholar] [CrossRef]
- Belli, A.; Mobili, A.; Bellezze, T.; Cachim, P.B.; Tittarelli, F. Commercial and recycled carbon-based fillers and fibers for self-sensing cement-based composites: Comparison of mechanical strength, durability, and piezoresistive behavior. J. Build. Eng. 2023, 73, 106836. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, W.; Xue, J.; Liu, Y.; Liu, Y.; Yan, P.; Liu, J.; Tang, J. Recent advances in synthetic methods and applications of silver nanostructures. Nanoscale Res. Lett. 2018, 13, 1–18. [Google Scholar] [CrossRef]
- Mariani, S.; Corsi, M.; Paghi, A.; La Mattina, A.A.; Strambini, L.; Frontini, F.P.; Giuseppe, G.D.; Barillaro, G. 4D Printing of Plasmon-Encoded Tunable Polydimethylsiloxane Lenses for On-Field Microscopy of Microbes. Adv. Opt. Mater. 2022, 10, 2101610. [Google Scholar] [CrossRef]
- Li, H.; Ding, G.; Yang, Z. A High Sensitive Flexible Pressure Sensor Designed by Silver Nanowires Embedded in Polyimide (AgNW-PI). Micromachines 2019, 10, 206. [Google Scholar] [CrossRef]
- Paghi, A.; Corsi, M.; Corso, S.; Mariani, S.; Barillaro, G. In situ controlled and conformal coating of polydimethylsiloxane foams with silver nanoparticle networks with tunable piezo-resistive properties. Nanoscale Horiz. 2022, 7, 425–436. [Google Scholar] [CrossRef]
- GB/T 17671-2021; State Administration for Market Regulation, Test Method of Cement Mortar Strength (ISO Method). China Standards Press: Beijing, China, 2021. (In Chinese)
- Han, B.; Guan, X.; Ou, J. Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors. Sens. Actuators A Phys. 2007, 135, 360–369. [Google Scholar] [CrossRef]
- Hong, L. Study on the Smart Properties of the Graphite Slurry Infiltrated Steel Fiber Concrete (GSIFCON). Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2006. [Google Scholar]
- Han, B.; Yu, Y.; Han, B.; Ou, J. Development of a wireless stress/strain measurement system integrated with pressure-sensitive nickel powder-filled cement-based sensors. Sens. Actuators A Phys. 2008, 147, 536–543. [Google Scholar] [CrossRef]
- Sobolkina, A.; Mechtcherine, V.; Khavrus, V.; Maier, D.; Mende, M.; Ritschel, M.; Leonhardt, A. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem. Concr. Compos. 2012, 34, 1104–1113. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Cheng, C.; Wei, H.; Du, S.; Yan, J. Surface-treated carbon nanotubes in cement composites: Dispersion, mechanical properties and microstructure. Constr. Build. Mater. 2021, 310, 125262. [Google Scholar] [CrossRef]
- Zhang, J.; Heath, A.; Abdalgadir, H.M.T.; Ball, R.J.; Paine, K. Electrical impedance behaviour of carbon fibre reinforced cement-based sensors at different moisture contents. Constr. Build. Mater. 2022, 353, 129049. [Google Scholar] [CrossRef]
- Guo, R.; Suo, Y.; Xia, H.; Yang, Y.; Ma, Q.; Yan, F. Study of piezoresistive behavior of smart cement filled with graphene oxide. Nanomaterials 2021, 11, 206. [Google Scholar] [CrossRef]
- Han, B.; Ding, S.; Yu, X. Intrinsic self-sensing concrete and structures: A review. Measurement 2015, 59, 110–128. [Google Scholar] [CrossRef]
- Ruschau, G.; Yoshikawa, S.; Newnham, R. Resistivities of conductive composites. J. Appl. Phys. 1992, 72, 953–959. [Google Scholar] [CrossRef]
- Mardani, M.; Hossein Hosseini Lavassani, S.; Adresi, M.; Rashidi, A. Piezoresistivity and mechanical properties of self-sensing CNT cementitious nanocomposites: Optimizing the effects of CNT dispersion and surfactants. Constr. Build. Mater. 2022, 349, 128127. [Google Scholar] [CrossRef]
- Suo, Y.; Xia, H.; Guo, R.; Yang, Y. Study on self-sensing capabilities of smart cements filled with graphene oxide under dynamic cyclic loading. J. Build. Eng. 2022, 58, 104775. [Google Scholar] [CrossRef]
- Al-Dahawi, A.; Sarwary, M.H.; Öztürk, O.; Yıldırım, G.; Akın, A.; Şahmaran, M.; Lachemi, M. Electrical percolation threshold of cementitious composites possessing self-sensing functionality incorporating different carbon-based materials. Smart Mater. Struct. 2016, 25, 105005. [Google Scholar] [CrossRef]
- Luo, J. Fabrication and Functional Properties of Multi-Walled Carbon Nanotube/Cement Composites. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2009. [Google Scholar]
- Yang, H.; Cui, H.; Tang, W.; Li, Z.; Han, N.; Xing, F. A critical review on research progress of graphene/cement based composites. Compos. Part A Appl. Sci. Manuf. 2017, 102, 273–296. [Google Scholar] [CrossRef]
- Galao, O.; Baeza, F.J.; Zornoza, E.; Garcés, P. Strain and damage sensing properties on multifunctional cement composites with CNF admixture. Cem. Concr. Compos. 2014, 46, 90–98. [Google Scholar] [CrossRef]
- Xue, Q. The influence of particle shape and size on electric conductivity of metal–polymer composites. Eur. Polym. J. 2004, 40, 323–327. [Google Scholar] [CrossRef]
- Baeza, F.J.; Galao, O.; Zornoza, E.; Garcés, P. Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites. Mater. Des. 2013, 51, 1085–1094. [Google Scholar] [CrossRef]
- Sun, S.; Han, B.; Jiang, S.; Yu, X.; Wang, Y.; Li, H.; Ou, J. Nano graphite platelets-enabled piezoresistive cementitious composites for structural health monitoring. Constr. Build. Mater. 2017, 136, 314–328. [Google Scholar] [CrossRef]
Group | Cement [g] | Water [g] | AgNPs Aqueous 1 [mL] | AgNPs [wt% of Cement] |
---|---|---|---|---|
G0 | 450 | 180 | 0 | 0 |
G1 | 450 | 170 | 10 | 0.0022 |
G2 | 450 | 160 | 20 | 0.0044 |
G3 | 450 | 150 | 30 | 0.0066 |
G4 | 450 | 140 | 40 | 0.0088 |
G5 | 450 | 130 | 50 | 0.011 |
Concentration | Aqueous AgNPs 1 [g] | Deionised Water [g] | |
---|---|---|---|
Neutral solution | 0.01 mg/g | 1 | 99 |
0.02 mg/g | 2 | 98 | |
0.03 mg/g | 3 | 97 | |
0.04 mg/g | 4 | 96 |
Group | Waterlogged State (M0) | Absolute Dry State (M1) | Moisture Content (After Drying) [%] | ||
---|---|---|---|---|---|
1 h | 2 h | 3 h | |||
G0 | 502.2 | 491.3 | 55.96 | 24.77 | 0 |
G1 | 515.8 | 503.7 | 56.16 | 34.71 | 0 |
G2 | 509.4 | 497.6 | 55.93 | 28.81 | 0 |
G3 | 506.6 | 495.4 | 48.21 | 32.14 | 0 |
G4 | 509.1 | 495.9 | 54.39 | 31.06 | 0 |
G5 | 505.6 | 494.1 | 50.43 | 33.91 | 0 |
Stress/MPa | G1 | G2 | G3 | G4 | G5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
ΔFCR 1 | SS 1 | ΔFCR | SS | ΔFCR | SS | ΔFCR | SS | ΔFCR | SS | |
1.25–3.4 | 1.834 | 0.838 | 3.853 | 1.761 | 25.436 | 11.628 | 12.916 | 5.904 | 11.431 | 5.225 |
1.25–3.75 | 2.714 | 1.086 | 4.411 | 1.764 | 29.339 | 11.736 | 15.115 | 6.046 | 13.359 | 5.344 |
1.25–4.7 | 3.555 | 1.034 | 5.828 | 1.695 | 36.534 | 10.628 | 17.414 | 5.066 | 16.417 | 4.776 |
1.25–6.25 | 3.931 | 0.786 | 6.815 | 1.363 | 44.879 | 8.976 | 19.528 | 3.906 | 17.489 | 3.498 |
Type of Matrix | Vol. or wt. Ratio in Cement [%] | ΔFCR | Reference |
---|---|---|---|
CNF | 0.5 wt | 0.9 | Galao et al. [40] |
1.0 wt | 1.0 | ||
2.0 wt | 1.8 | ||
CF | 0.1 wt | 13 | Baeza et al. [42] |
Nano-graphite | 3.0 vol | 2.5 | Sun et al. [43] |
5.0 vol | 15.6 |
Appearance | Dopant Amount 1 | Volume Ratio | Calculate the Edge Lengths of the Microelements [nm] | |
---|---|---|---|---|
P-CNT | Tubular | 0.3 wt% | 0.391% | 1712 |
AgNPs | Spherical | 0.0048 wt% | 0.0117% | 164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Sun, M. Pressure-Sensitive Capability of AgNPs Self-Sensing Cementitious Sensors. Sensors 2023, 23, 9629. https://doi.org/10.3390/s23249629
Zhu H, Sun M. Pressure-Sensitive Capability of AgNPs Self-Sensing Cementitious Sensors. Sensors. 2023; 23(24):9629. https://doi.org/10.3390/s23249629
Chicago/Turabian StyleZhu, Haoran, and Min Sun. 2023. "Pressure-Sensitive Capability of AgNPs Self-Sensing Cementitious Sensors" Sensors 23, no. 24: 9629. https://doi.org/10.3390/s23249629
APA StyleZhu, H., & Sun, M. (2023). Pressure-Sensitive Capability of AgNPs Self-Sensing Cementitious Sensors. Sensors, 23(24), 9629. https://doi.org/10.3390/s23249629