Concurrent Validity of Cervical Movement Tests Using VR Technology—Taking the Lab to the Clinic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Devices
2.2. Data Collection
2.3. Calculation of Outcome Variables
2.4. Statistics
3. Results
3.1. Range of Motion
3.1.1. Correlation between VR and Qualisys for ROM Variables
3.1.2. Agreement between VR and Qualisys Motion Capture ROM
3.2. Velocity
3.2.1. Correlation between VR and Qualisys Velocity Measurements
3.2.2. Agreement between VR and Qualisys Velocity Measures
3.3. Repeatability of VR’s Range of Motion Variables
3.3.1. Correlation of VR’s ROM Repetitions 1 and 2
3.3.2. Agreement of VR’s ROM Repetitions 1 and 2
3.4. Repeatability of VR Velocity
3.4.1. Correlation of VR’s Velocity Repetitions 1 and 2
3.4.2. Agreement of VR’s Velocity Repetitions 1 and 2
4. Discussion
Clinical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
VR Rep1 Mean (SD)° | VR Rep2 Mean (SD)° | Mean Difference ° | Std. Deviation | Std. Error of Mean | 95% Confidence Interval of the Difference | t | Significance Two-Sided p | ||
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
Rotation right | 64.6 (8.8) | 64.5 (10.3) | 0.1 | 3.8 | 0.8 | −1.6 | 1.9 | 0.15 | 0.882 |
Rotation left | 70.9 (9.7) | 71.0 (11.4) | −0.1 | 4.6 | 1.0 | −2.2 | 2.1 | −0.08 | 0.934 |
Extension | 64.8 (11.0) | 64.3 (12.0) | 0.4 | 4.3 | 1.0 | −1.6 | 2.4 | 0.44 | 0.666 |
Flexion | 48.2 (10.3) | 48.0 (11.4) | 0.2 | 5.1 | 1.1 | −2.2 | 2.6 | 0.16 | 0.878 |
Lateral flexion right | 40.0 (9.7) | 39.4 (9.5) | 0.7 | 3.7 | 0.8 | −1.1 | 2.4 | 0.79 | 0.439 |
Lateral flexion left | 39.6 (11.2) | 38.2 (10.9) | 1.3 | 2.6 | 0.6 | 0.1 | 2.5 | 2.28 | 0.034 * |
Diagonal extension right | 64.7 (10.6) | 65.9 (10.7) | −1.2 | 5.8 | 1.3 | −3.9 | 1.5 | −0.95 | 0.353 |
Diagonal extension left | 67.5 (10.0) | 68.3 (9.9) | −0.8 | 3.4 | 0.8 | −2.3 | 0.8 | −1.01 | 0.324 |
Diagonal flexion right | 61.3 (10.9) | 60.6 (11.7) | 0.7 | 4.3 | 1.0 | −1.3 | 2.7 | 0.76 | 0.454 |
Diagonal flexion left | 62.1 (11.0) | 61.5 (12.7) | 0.7 | 4.3 | 1.0 | −1.4 | 2.7 | 0.68 | 0.503 |
Cervical Movement Direction | Pearson’s r | ICC (3.1) 95% CI |
---|---|---|
Rotation right | 0.934 *** | 0.927 *** 0.824 to 0.970 |
Rotation left | 0.917 *** | 0.910 *** 0.787 to 0.963 |
Extension | 0.934 *** | 0.933 *** 0.840 to 0.973 |
Flexion | 0.896 *** | 0.895 *** 0.754 to 0.957 |
Lateral flexion right | 0.926 *** | 0.927 *** 0.827 to 0.970 |
Lateral flexion left | 0.973 *** | 0.967 *** 0.906 to 0.988 |
Diagonal extension right | 0.852 *** | 0.852 *** 0.669 to 0.938 |
Diagonal extension left | 0.944 *** | 0.943 *** 0.865 to 0.977 |
Diagonal flexion right | 0.931 *** | 0.930 *** 0.834 to 0.972 |
Diagonal flexion left | 0.944 *** | 0.936 *** 0.847 to 0.974 |
Mean Bias° (Rep 1 minus Rep 2) | Median Bias° (Rep 1 minus Rep 2) | 95% LOA° | LOA Percentiles° | |||
---|---|---|---|---|---|---|
Lower | Upper | 5th Percentile | 95th Percentile | |||
Rotation right 1 | 0.1 | 0.6 | −7.2 | 7.5 | −11.0 | 4.5 |
Rotation left | −0.1 | −0.7 | −9.1 | 8.9 | −6.5 | 9.3 |
Extension | 0.4 | −0.6 | −8.0 | 8.8 | −6.2 | 7.6 |
Flexion | 0.2 | 0.6 | −9.8 | 10.1 | −13.9 | 8.3 |
Lateral flexion right | 0.7 | 0.2 | −6.6 | 7.9 | −5.0 | 10.3 |
Lateral flexion left | 1.3 | 1.2 | −3.7 | 6.4 | −3.7 | 6.4 |
Diagonal extension right | −1.2 | −1.8 | −12.6 | 10.1 | −9.4 | 10.4 |
Diagonal extension left | −0.8 | 0.1 | −7.3 | 5.8 | −7.2 | 5.0 |
Diagonal flexion right | 0.7 | 0.1 | −7.6 | 9.1 | −7.7 | 8.9 |
Diagonal flexion left | 0.7 | 1.2 | −7.8 | 9.1 | −8.7 | 7.0 |
Velocity Variables | VR Rep 1 Mean (SD) °/s | VR Rep 2 Mean (SD) °/s | Mean Difference (SD) °/s | Std. Error of Mean | 95% Confidence Interval of the Difference | t | p | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Maximum velocity | ||||||||
Right Rotation | 299.9 (141.9) | 331.6 (151.8) | −31.7 (82.5) | 18.9 | −71.5 | 8.0 | −1.68 | 0.111 |
Left Rotation | 350.8 (154.0) | 352.5 (157.6) | −1.7 (52.1) | 12.0 | −26.8 | 23.4 | −0.14 | 0.889 |
Mean velocity | ||||||||
Right Rotation | 161.1 (77.1) | 185.3 (96.4) | −24.2 (50.5) | 11.6 | −48.6 | 0.1 | −2.09 | 0.051 |
Left Rotation | 191.8 (91.6) | 192.6 (95.7) | −0.8 (32.0) | 7.3 | −16.2 | 14.6 | −0.11 | 0.915 |
Velocity Variables | Pearson’s r | ICC (3.1) 95% CI |
---|---|---|
Maximum Velocity | ||
Right Rotation | 0.844 *** | 0.830 *** 0.611 to 0.931 |
Left Rotation | 0.944 *** | 0.947 *** 0.867 to 0.979 |
Mean Velocity | ||
Right Rotation | 0.854 *** | 0.809 *** 0.548 to 0.923 |
Left Rotation | 0.943 *** | 0.944 *** 0.862 to 0.978 |
Mean Bias°/s (VR Rep 1 minus VR Rep 2) | Median Bias°/s (VR Rep 1 minus VR Rep 2) | 95% LOA°/s | LOA Percentiles °/s | |||
---|---|---|---|---|---|---|
Lower | Upper | 5th | 90th | |||
Maximum velocity | ||||||
Rotation right 1 | −31.7 | −19.5 | −193.3 | 129.9 | −263.7 | 38.0 |
Rotation left | −1.7 | −6.0 | −103.8 | 100.4 | −109.4 | 76.3 |
Mean velocity | ||||||
Rotation right 1 | −24.2 | −5.7 | −123.2 | 74.7 | −151.6 | 26.0 |
Rotation left | −0.8 | −2.4 | −63.5 | 62.0 | −62.1 | 42.0 |
References
- Vos, T.; Abajobir, A.A.; Abbafati, C.; Abbas, K.M.; Abate, K.H.; Abd-Allah, F.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; Aboyans, V.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [PubMed]
- Safiri, S.; Kolahi, A.A.; Hoy, D.; Buchbinder, R.; Mansournia, M.A.; Bettampadi, D.; Ashrafi-Asgarabad, A.; Almasi-Hashiani, A.; Smith, E.; Sepidarkish, M.; et al. Global, regional, and national burden of neck pain in the general population, 1990-2017: Systematic analysis of the Global Burden of Disease Study 2017. BMJ-Br. Med. J. 2020, 368, m791. [Google Scholar] [CrossRef] [PubMed]
- Hogg-Johnson, S.; van der Velde, G.; Carroll, L.J.; Holm, L.W.; Cassidy, J.D.; Guzman, J.; Côté, P.; Haldeman, S.; Ammendolia, C.; Carragee, E.; et al. The burden and determinants of neck pain in the general population: Results of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders. Spine 2008, 33, S39–S51. [Google Scholar] [CrossRef] [PubMed]
- Holtermann, A.; Hansen, J.V.; Burr, H.; Søgaard, K. Prognostic factors for long-term sickness absence among employees with neck–shoulder and low-back pain. Scand. J. Work Environ. Health 2010, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Kazeminasab, S.; Nejadghaderi, S.A.; Amiri, P.; Pourfathi, H.; Araj-Khodaei, M.; Sullman, M.J.M.; Kolahi, A.A.; Safiri, S. Neck pain: Global epidemiology, trends and risk factors. BMC Musculoskelet. Disord. 2022, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- Dieleman, J.L.; Cao, J.; Chapin, A.; Chen, C.; Li, Z.; Liu, A.; Horst, C.; Kaldjian, A.; Matyasz, T.; Scott, K.W.; et al. US Health Care Spending by Payer and Health Condition, 1996-2016. JAMA 2020, 323, 863–884. [Google Scholar] [CrossRef] [PubMed]
- Dall’Alba, P.T.; Sterling, M.M.; Treleaven, J.M.; Edwards, S.L.; Jull, G.A. Cervical range of motion discriminates between asymptomatic persons and those with whiplash. Spine 2001, 26, 2090–2094. [Google Scholar] [CrossRef]
- Stenneberg, M.S.; Rood, M.; de Bie, R.; Schmitt, M.A.; Cattrysse, E.; Scholten-Peeters, G.G. To What Degree Does Active Cervical Range of Motion Differ Between Patients with Neck Pain, Patients With Whiplash, and Those Without Neck Pain? A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2017, 98, 1407–1434. [Google Scholar] [CrossRef]
- Vogt, L.; Segieth, C.; Banzer, W.; Himmelreich, H. Movement behaviour in patients with chronic neck pain. Physiother. Res. Int. 2007, 12, 206–212. [Google Scholar] [CrossRef]
- Sarig Bahat, H.; Weiss, P.L.; Sprecher, E.; Krasovsky, A.; Laufer, Y. Do neck kinematics correlate with pain intensity, neck disability or with fear of motion? Man Ther. 2014, 19, 252–258. [Google Scholar] [CrossRef]
- Sarig Bahat, H.; Weiss, P.L.; Laufer, Y. Neck pain assessment in a virtual environment. Spine 2010, 35, E105–E112. [Google Scholar] [CrossRef] [PubMed]
- Sarig Bahat, H.; Chen, X.; Reznik, D.; Kodesh, E.; Treleaven, J. Interactive cervical motion kinematics: Sensitivity, specificity and clinically significant values for identifying kinematic impairments in patients with chronic neck pain. Man. Ther. 2015, 20, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Sarig Bahat, H.; Weiss, P.L.; Laufer, Y. The effect of neck pain on cervical kinematics, as assessed in a virtual environment. Arch. Phys. Med. Rehabil. 2010, 91, 1884–1890. [Google Scholar] [CrossRef] [PubMed]
- Sarig Bahat, H.; Watt, P.; Rhodes, M.; Hadar, D.; Treleaven, J. High-vs. low-tech cervical movement sense measurement in individuals with neck pain. Musculoskelet. Sci. Pract. 2020, 45, 102097. [Google Scholar] [CrossRef] [PubMed]
- Röijezon, U.; Djupsjöbacka, M.; Björklund, M.; Häger-Ross, C.; Grip, H.; Liebermann, D.G. Kinematics of fast cervical rotations in persons with chronic neck pain: A cross-sectional and reliability study. BMC Musculoskelet. Disord. 2010, 11, 222. [Google Scholar] [CrossRef]
- Salehi, R.; Rasouli, O.; Saadat, M.; Mehravar, M.; Negahban, H.; Yazdi, M.J.S. Cervical movement kinematic analysis in patients with chronic neck pain: A comparative study with healthy subjects. Musculoskelet. Sci. Pract. 2021, 53, 102377. [Google Scholar] [CrossRef]
- Tsang, S.M.; Szeto, G.P.; Lee, R.Y. Altered spinal kinematics and muscle recruitment pattern of the cervical and thoracic spine in people with chronic neck pain during functional task. J. Electromyogr. Kinesiol. 2014, 24, 104–113. [Google Scholar] [CrossRef]
- Blanpied, P.R.; Gross, A.R.; Elliott, J.M.; Devaney, L.L.; Clewley, D.; Walton, D.M.; Sparks, C.; Robertson, E.K. Neck Pain: Revision 2017. J. Orthop. Sports Phys. Ther. 2017, 47, A1–A83. [Google Scholar] [CrossRef]
- de Koning, C.H.P.; van den Heuvel, S.P.; Staal, J.B.; Smits-Engelsman, B.C.M.; Hendriks, E.J.M. Clinimetric evaluation of active range of motion measures in patients with non-specific neck pain: A systematic review. Eur. Spine J. 2008, 17, 905–921. [Google Scholar] [CrossRef]
- Palmieri, M.; Donno, L.; Cimolin, V.; Galli, M. Cervical Range of Motion Assessment through Inertial Technology: A Validity and Reliability Study. Sensors 2023, 23, 6013. [Google Scholar] [CrossRef]
- Xu, X.; Chen, K.B.; Lin, J.H.; Radwin, R.G. The accuracy of the Oculus Rift virtual reality head-mounted display during cervical spine mobility measurement. J. Biomech. 2015, 48, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Malmström, E.M.; Karlberg, M.; Melander, A.; Magnusson, M. Zebris versus Myrin: A comparative study between a three-dimensional ultrasound movement analysis and an inclinometer/compass method: Intradevice reliability, concurrent validity, intertester comparison, intratester reliability, and intraindividual variability. Spine 2003, 28, E433–E440. [Google Scholar] [CrossRef] [PubMed]
- Christensen, S.W.M.; Palsson, T.S.; Djurtoft, C.; Simonsen, M.B. Agreement between a 3D camera system and an inertial measurement unit for assessing the range of motion, head repositioning accuracy and quality of movement during neck and head movements. Eur. J. Physiother. 2023. [Google Scholar] [CrossRef]
- Gumaa, M.; Khaireldin, A.; Rehan Youssef, A. Validity and Reliability of Interactive Virtual Reality in Assessing the Musculoskeletal System: A Systematic Review. Curr. Rev. Musculoskelet. Med. 2021, 14, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Sarig Bahat, H.; Laufer, Y.; Weiss, P.L. Cervical motion assessment using virtual reality. Spine 2009, 34, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Sjölander, P.; Michaelson, P.; Jaric, S.; Djupsjöbacka, M. Sensorimotor disturbances in chronic neck pain--range of motion, peak velocity, smoothness of movement, and repositioning acuity. Man Ther. 2008, 13, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Sarig Bahat, H.; Croft, K.; Carter, C.; Hoddinott, A.; Sprecher, E.; Treleaven, J. Remote kinematic training for patients with chronic neck pain: A randomised controlled trial. Eur. Spine J. 2018, 27, 1309–1323. [Google Scholar] [CrossRef]
- Bannigan, K.; Watson, R. Reliability and validity in a nutshell. J. Clin. Nurs. 2009, 18, 3237–3243. [Google Scholar] [CrossRef]
- Scholtes, V.A.; Terwee, C.B.; Poolman, R.W. What makes a measurement instrument valid and reliable? Injury 2011, 42, 236–240. [Google Scholar] [CrossRef]
- Lubetzky, A.V.; Wang, Z.; Krasovsky, T. Head mounted displays for capturing head kinematics in postural tasks. J. Biomech. 2019, 86, 175–182. [Google Scholar] [CrossRef]
- Donegan, T.; Ryan, B.; Świdrak, J.; Sanchez-Vives, M. Immersive Virtual Reality for Clinical Pain: Considerations for Effective Therapy. Front. Virtual Real. 2020, 1, 9. [Google Scholar] [CrossRef]
- Topley, M.; Richards, J.G. A comparison of currently available optoelectronic motion capture systems. J. Biomech. 2020, 106, 109820. [Google Scholar] [CrossRef] [PubMed]
- Vox, J.P.; Weber, A.; Wolf, K.I.; Izdebski, K.; Schüler, T.; König, P.; Wallhoff, F.; Friemert, D. An Evaluation of Motion Trackers with Virtual Reality Sensor Technology in Comparison to a Marker-Based Motion Capture System Based on Joint Angles for Ergonomic Risk Assessment. Sensors 2021, 21, 3145. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, R.H.; Turk, D.C.; Farrar, J.T.; Haythornthwaite, J.A.; Jensen, M.P.; Katz, N.P.; Kerns, R.D.; Stucki, G.; Allen, R.R.; Bellamy, N.; et al. Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. Pain 2005, 113, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Schober, P.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Medica 2015, 25, 141–151. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Measurement in Medicine: The Analysis of Method Comparison Studies. J. R. Stat. Soc. Ser. D (Stat.) 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Audette, I.; Dumas, J.-P.; Côté, J.N.; De Serres, S.J. Validity and Between-Day Reliability of the Cervical Range of Motion (CROM) Device. J. Orthop. Sports Phys. Ther. 2010, 40, 318–323. [Google Scholar] [CrossRef]
- Akizuki, K.; Yamaguchi, K.; Morita, Y.; Ohashi, Y. The effect of proficiency level on measurement error of range of motion. J. Phys. Ther. Sci. 2016, 28, 2644–2651. [Google Scholar] [CrossRef] [PubMed]
- Grip, H.; Sundelin, G.; Gerdle, B.; Stefan Karlsson, J. Cervical helical axis characteristics and its center of rotation during active head and upper arm movements-comparisons of whiplash-associated disorders, non-specific neck pain and asymptomatic individuals. J. Biomech. 2008, 41, 2799–2805. [Google Scholar] [CrossRef] [PubMed]
- Sarig Bahat, H.; Takasaki, H.; Chen, X.; Bet-Or, Y.; Treleaven, J. Cervical kinematic training with and without interactive VR training for chronic neck pain—A randomized clinical trial. Man Ther. 2015, 20, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Nusser, M.; Knapp, S.; Kramer, M.; Krischak, G. Effects of virtual reality-based neck-specific sensorimotor training in patients with chronic neck pain: A randomized controlled pilot trial. J. Rehabil. Med. 2021, 53, jrm00151. [Google Scholar] [CrossRef]
- Liu, W.; McDonough, D.J.; Gao, Z.; Zeng, N.; Pope, Z.C. Acute effects of immersive virtual reality exercise on young adults’ situational motivation. J. Clin. Med. 2019, 8, 1947. [Google Scholar] [CrossRef]
- Ghorbani, S.; Dana, A.; Fallah, Z. The effects of external and internal focus of attention on motor learning and promoting learner’s focus. Biomed. Hum. Kinet. 2019, 11, 175–180. [Google Scholar] [CrossRef]
Cervical Movement Direction | Qualisys Mean (SD)° | VR Mean (SD)° | Mean Difference° | Std. Deviation | Std. Error of Mean | 95% Confidence Interval of the Difference | t- Value | p | |
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
Rotation right | 66.7 (8.5) | 64.6 (8.8) | 2.1 | 1.5 | 0.3 | 1.4 | 2.8 | 6.15 | <0.001 |
Rotation left | 70.4 (9.9) | 70.9 (9.7) | −0.6 | 1.6 | 0.4 | −1.3 | 0.2 | −1.59 | 0.128 |
Extension | 64.7 (10.7) | 64.8 (11.0) | −0.1 | 0.8 | 0.2 | −0.5 | 0.3 | −0.55 | 0.589 |
Flexion | 48.0 (10.1) | 48.2 (10.3) | −0.2 | 0.7 | 0.2 | −0.6 | 0.1 | −1.30 | 0.210 |
Lateral flexion right | 39.4 (10.2) | 40.0 (9.7) | −0.7 | 1.6 | 0.4 | −1.4 | 0.1 | −1.77 | 0.092 |
Lateral flexion left | 39.3 (10.7) | 39.6 (11.2) | −0.3 | 1.7 | 0.4 | −1.1 | 0.5 | −0.75 | 0.462 |
Diagonal extension right | 64.5 (10.0) | 64.7 (10.6) | −0.2 | 2.7 | 0.6 | −1.4 | 1.1 | −0.28 | 0.780 |
Diagonal extension left | 67.0 (10.0) | 67.5 (10.0) | −0.5 | 1.5 | 0.3 | −1.2 | 0.2 | −1.45 | 0.164 |
Diagonal flexion right | 62.3 (10.8) | 61.3 (10.9) | 1.0 | 2.6 | 0.6 | −0.3 | 2.2 | 1.66 | 0.113 |
Diagonal flexion left | 62.9 (11.8) | 62.1 (11.0) | 0.7 | 3.1 | 0.7 | −0.7 | 2.2 | 1.07 | 0.298 |
Cervical Movement Direction | Pearson r | ICC (2.1) 95% CI |
---|---|---|
Rotation right | 0.986 *** | 0.958 *** 0.396 to 0.990 |
Rotation left | 0.987 *** | 0.986 *** 0.964 to 0.994 |
Extension | 0.997 *** | 0.997 *** 0.993 to 0.999 |
Flexion | 0.998 *** | 0.997 *** 0.993 to 0.999 |
Lateral flexion right | 0.988 *** | 0.985 *** 0.962 to 0.994 |
Lateral flexion left | 0.988 *** | 0.988 *** 0.969 to 0.995 |
Diagonal extension right | 0.967 *** | 0.967 *** 0.918 to 0.987 |
Diagonal extension left | 0.989 *** | 0.988 *** 0.970 to 0.995 |
Diagonal flexion right | 0.971 *** | 0.969 *** 0.922 to 0.988 |
Diagonal flexion left | 0.965 *** | 0.963 *** 0.910 to 0.985 |
Cervical Range of Motion Variable | Mean Bias° (Qualisys Minus VR) | Median Bias° (Qualisys Minus VR) | 95% LOA° | LOA Percentiles° | ||
---|---|---|---|---|---|---|
Lower | Upper | 5th | 95th | |||
Rotation right 1 | 2.1 | 2.6 | −0.9 | 5.0 | −1.7 | 4.0 |
Rotation left | −0.6 | −0.7 | −3.7 | 2.6 | −3.1 | 4.0 |
Extension | −0.1 | −0.2 | −1.7 | 1.5 | −1.5 | 1.4 |
Flexion 1 | −0.2 | −0.2 | −1.7 | 1.2 | −2.1 | 0.7 |
Lateral flexion right | −0.7 | −0.9 | −3.9 | 2.6 | −2.8 | 2.5 |
Lateral flexion left | −0.3 | −1.0 | −3.7 | 3.1 | −3.1 | 2.7 |
Diagonal extension right 1 | −0.2 | 0.5 | −5.5 | 5.1 | −9.2 | 3.3 |
Diagonal extension left | −0.5 | −0.5 | −3.4 | 2.5 | −2.9 | 1.8 |
Diagonal flexion right | 1.0 | 0.8 | −4.1 | 6.0 | −3.0 | 7.1 |
Diagonal flexion left 1 | 0.7 | 0.5 | −5.4 | 6.8 | −4.3 | 10.6 |
Qualisys Mean (SD)°/s | VR Mean (SD)°/s | Mean Difference °/s | SD | Std. Error Mean | 95% Confidence Interval of the Difference | t | p | ||
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
Maximum velocity | |||||||||
Rotation right | 322.7 (135.9) | 330.4 (145.3) | −7.7 | 17.0 | 3.9 | −15.9 | 0.5 | −1.98 | 0.063 |
Rotation left | 343.4 (134.1) | 355.1 (157.2) | −11.7 | 30.6 | 7.0 | −26.4 | 3.0 | −1.67 | 0.112 |
Mean velocity | |||||||||
Rotation right | 180.2 (89.1) | 178.7 (85.0) | 1.5 | 9.5 | 2.2 | −3.1 | 6.1 | 0.68 | 0.507 |
Rotation left | 191.4 (92.2) | 194.4 (95.9) | −3.0 | 8.3 | 1.9 | −7.1 | 1.0 | −1.59 | 0.129 |
Velocity Variables | Pearson r | ICC (2.1) 95% CI |
---|---|---|
Maximum velocity | ||
Rotation right | 0.995 *** | 0.992 *** 0.976 to 0.997 |
Rotation left | 0.991 *** | 0.976 *** 0.938 to 0.991 |
Mean velocity | ||
Rotation right | 0.995 *** | 0.994 *** 0.985 to 0.998 |
Rotation left | 0.997 *** | 0.996 *** 0.989 to 0.998 |
Mean Bias°/s (Qualisys Minus VR) | Median Bias°/s (Qualisys Minus VR) | 95% LOA°/s | LOA Percentiles °/s | |||
---|---|---|---|---|---|---|
Lower | Upper | 5th | 90th | |||
Maximum velocity | ||||||
Rotation right | −7.7 | −10.1 | −40.9 | 25.5 | −43.7 | 18.9 |
Rotation left 1 | −11.7 | −0.5 | −71.6 | 48.2 | −83.3 | 18.6 |
Mean velocity | ||||||
Rotation right | 1.5 | 1.0 | −17.2 | 20.2 | −16.2 | 14.6 |
Rotation left 1 | −3.0 | −1.4 | −19.4 | 13.3 | −30.8 | 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forsberg, K.; Jirlén, J.; Jacobson, I.; Röijezon, U. Concurrent Validity of Cervical Movement Tests Using VR Technology—Taking the Lab to the Clinic. Sensors 2023, 23, 9864. https://doi.org/10.3390/s23249864
Forsberg K, Jirlén J, Jacobson I, Röijezon U. Concurrent Validity of Cervical Movement Tests Using VR Technology—Taking the Lab to the Clinic. Sensors. 2023; 23(24):9864. https://doi.org/10.3390/s23249864
Chicago/Turabian StyleForsberg, Karin, Johan Jirlén, Inger Jacobson, and Ulrik Röijezon. 2023. "Concurrent Validity of Cervical Movement Tests Using VR Technology—Taking the Lab to the Clinic" Sensors 23, no. 24: 9864. https://doi.org/10.3390/s23249864
APA StyleForsberg, K., Jirlén, J., Jacobson, I., & Röijezon, U. (2023). Concurrent Validity of Cervical Movement Tests Using VR Technology—Taking the Lab to the Clinic. Sensors, 23(24), 9864. https://doi.org/10.3390/s23249864