Electrochemical System for Field Control of Hg2+ Concentration in Wastewater Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Equipment
2.3. Procedures
2.3.1. Electrochemical Procedures for Hg2+ Analysis
- SPE electrodes modified with polyL films (SPE-polyL) are inserted into acetate buffer (0.1 M, pH = 3) and a cyclic voltammetry (CV) between −0.5 V and +1.2 V is performed. In this way, the electroactivity of the polymer film is destroyed, obtaining a lower background current. Before analysis, a differential pulse voltammogram in free analyte solution was recorded to observe the background current. Conditions: DPV: equilibration time 5 s; starting potential 0.5 V; potential vertex 1 −1.3 V; potential vertex 1 0.5 V; potential step 0.01 V; scanning speed 0.024 V/s, number of cycles 1.
- After stage I, the SPE-polyL electrodes are immersed in 20 mL complexation solution (Hg2+ ions in acetate buffer (0.05 M, pH = 3), kept for 20 min under stirring (open circuit complexation).
- After stage II, the SPE-polyL electrodes are removed from the complexation solution and rinsed with ultrapure water to remove traces of uncomplexed Hg2+ ions.
- The electrodes are inserted into the acetate buffer (0.1 M, pH = 3) where the Hg2+ ions retained on the surface of the SPE-polyL electrodes are reduced to zero valence by polarizing the electrodes at −1.3 V for 15 s followed by their reoxidation using DPV under the following conditions: conditioning potential 0 V; conditioning time 0 s; storage time 15 s; storage potential −1.3 V; equilibration time 5 s; start potential −1.3 V; closing potential 1 V; potential step −0.005 V, pulse time 0.05 V; scan speed 0.01 V/s.
2.3.2. Alternative Method for Control of Hg2+ in Wastewater Samples
2.3.3. Wastewater Sampling
3. Results
3.1. Electrochemical Performance of SPE-poliL for Hg2+ Analysis
3.1.1. Linearity and Working Range
3.1.2. LOD, LOQ
3.1.3. Accuracy
3.1.4. Repeatability
3.1.5. Intermediate Precision
3.1.6. Interference
3.1.7. Recovery
3.1.8. Robustness
3.1.9. Uncertainty Budget
3.2. Electrochemical Analysis of Hg2+ in Wastewater Samples
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeromiyas, N.; Elaiyappillai, E.; Kumar, A.S.; Huang, S.-T.; Mani, V. Bismuth nanoparticles decorated graphenated carbon nanotubes modified screen-printed electrode for mercury detection. J. Taiwan Inst. Chem. Eng. 2019, 95, 466–474. [Google Scholar] [CrossRef]
- Chen, G.; Guo, Z.; Zeng, G.; Tang, L. Fluorescent and colorimetric sensors for environmental mercury detection. Analyst 2015, 140, 5400–5443. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Li, J.; Qi, J.; Chen, J. Highly selective and effective mercury(ii) fluorescent sensors. New J. Chem. 2015, 39, 843–848. [Google Scholar] [CrossRef]
- Sun, X.; Liu, R.; Liu, Q.; Fei, Q.; Feng, G.; Shan, H.; Huan, Y. Colorimetric sensing of mercury (II) ion based on anti-aggregation of gold nanoparticles in the presence of hexadecyl trimethyl ammonium bromide. Sens. Actuators B Chem. 2018, 260, 998–1003. [Google Scholar] [CrossRef]
- Zhang, J.R.; Huang, W.T.; Zeng, A.L.; Luo, H.Q.; Li, N.B. Ethynyl and π-stacked thymine–Hg2+–thymine base pairs enhanced fluorescence quenching via photoinduced electron transfer and simple and sensitive mercury ion sensing. Biosens. Bioelectron. 2015, 64, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Calvo, A.; Fernández-Abedul, M.; Blanco-López, M.; Costa-García, A. Paper-based electrochemical transducer modified with nanomaterials for mercury determination in environmental waters. Sens. Actuators B Chem. 2019, 290, 87–92. [Google Scholar] [CrossRef]
- Jia, S.; Bian, C.; Sun, J.; Tong, J.; Xia, S. A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates. Biosens. Bioelectron. 2018, 114, 15–21. [Google Scholar] [CrossRef]
- Duan, J.; Zhan, J. Recent developments on nanomaterials-based optical sensors for Hg2+ detection. Sci. China Mater. 2015, 58, 223–240. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Sun, L.; Zhang, Q.; Zhou, Y.; Zhang, J.; Yang, B.; Xu, B.; Xu, Q. Nanomaterials-Based Ion-Imprinted Electrochemical Sensors for Heavy Metal Ions Detection: A Review. Biosensors 2022, 12, 1096. [Google Scholar] [CrossRef]
- Manavalan, S.; Govindasamy, M.; Chen, S.-M.; Rajaji, U.; Chen, T.-W.; Ali, M.A.; Al-Hemaid, F.M.; Elshikh, M.; Farah, M.A. Reduced graphene oxide supported raspberry-like SrWO4 for sensitive detection of catechol in green tea and drinking water samples. J. Taiwan Inst. Chem. Eng. 2018, 89, 215–223. [Google Scholar] [CrossRef]
- Govindasamy, M.; Sriram, B.; Wang, S.-F.; Chang, Y.-J.; Rajabathar, J.R. Highly sensitive determination of cancer toxic mercury ions in biological and human sustenance samples based on green and robust synthesized stannic oxide nanoparticles decorated reduced graphene oxide sheets. Anal. Chim. Acta 2020, 1137, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Butmee, P.; Mala, J.; Damphathik, C.; Kunpatee, K.; Tumcharern, G.; Kerr, M.; Mehmeti, E.; Raber, G.; Kalcher, K.; Samphao, A. A portable selective electrochemical sensor amplified with Fe3O4@Au-cysteamine-thymine acetic acid as conductive mediator for determination of mercuric ion. Talanta 2021, 221, 121669. [Google Scholar] [CrossRef] [PubMed]
- Bohari, N.A.; Siddiquee, S.; Saallah, S.; Misson, M.; Arshad, S.E. Optimization and Analytical Behavior of Electrochemical Sensors Based on the Modification of Indium Tin Oxide (ITO) Using PANI/MWCNTs/AuNPs for Mercury Detection. Sensors 2020, 20, 6502. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Xu, Y.; Bian, C.; Wang, R.; Xie, Y.; Han, M.; Xia, S. Synthesis and Characterization of Ru-MOFs on Microelectrode for Trace Mercury Detection. Sensors 2020, 20, 6686. [Google Scholar] [CrossRef] [PubMed]
- Tapia, M.A.; Pérez-Ràfols, C.; Gusmão, R.; Serrano, N.; Sofer, Z.; Díaz-Cruz, J.M. Enhanced voltammetric determination of metal ions by using a bismuthene-modified screen-printed electrode. Electrochim. Acta 2020, 362, 137144. [Google Scholar] [CrossRef]
- Foster, C.W.; Kadara, R.O.; Banks, C.E. Introduction and Current Applications of Screen-Printed Electrochemical Architectures; Springer Briefs in Applied Sciences and Technology: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Niu, X.; Lan, M.; Zhao, H.; Chen, C.; Li, Y.; Zhu, X. Review: Electrochemical Stripping Analysis of Trace Heavy Metals Using Screen-Printed Electrodes. Anal. Lett. 2013, 46, 2479–2502. [Google Scholar] [CrossRef]
- Foster, C.W.; de Souza, A.P.; Metters, J.P.; Bertottib, M.; Banks, C.E. Metallic modified (bismuth, antimony, tin and combinations therof) film carbon electrodes. Analyst 2015, 140, 7598–7612. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, M.; Selva, E.; Hidalgo, M.; Canals, A. Dispersive liquid–liquid microextraction for metals enrichment: A useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis. Talanta 2015, 131, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Qi, P.; Qian, W.; Guo, L.; Xue, J.; Zhang, N.; Wang, Y.; Zhang, Z.; Zhang, Z.; Lin, L.; Sun, C.; et al. Sensing with Femtosecond Laser Filamentation. Sensors 2022, 22, 7076. [Google Scholar] [CrossRef]
- Lin, Q.; Bian, F.; Wei, Z.; Wang, S.; Duan, Y. A hydrogel-based solidification method for the direct analysis of liquid samples by laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2017, 32, 1412–1419. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.; Li, H. Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring. Spectrochim. Acta Part B 2021, 181, 106218. [Google Scholar] [CrossRef]
- Khan, Z.H.; Ullah, M.H.; Rahman, B.; Talukder, A.I.; Wahadoszamen; Abedin, K.M.; Haider, A.F.M.Y. Laser-Induced Breakdown Spectroscopy (LIBS) for Trace Element Detection: A Review. J. Spectrosc. 2022, 2022, 3887038. [Google Scholar] [CrossRef]
- Wang, X.; Wei, Y.; Lin, Q.; Zhang, J.; Duan, Y. Simple, Fast Matrix Conversion and Membrane Separation Method for Ultrasensitive Metal Detection in Aqueous Samples by Laser-Induced Breakdown Spectroscopy. Anal. Chem. 2015, 87, 5577–5583. [Google Scholar] [CrossRef] [PubMed]
- Casanova, A.; Iniesta, J.; Gomis-Berenguer, A. Recent progress in the development of porous carbon-based electrodes for sensing applications. Analyst 2022, 147, 767–783. [Google Scholar] [CrossRef]
- Buica, G.-O.; Lazar, I.-G.; Saint-Aman, E.; Tecuceanu, V.; Dumitriu, C.; Anton, I.A.; Stoian, A.B.; Ungureanu, E.-M. Ultrasensitive modified electrode based on poly(1H-pyrrole-1-hexanoic acid) for Pb(II) detection. Sens. Actuators B 2017, 246, 434–443. [Google Scholar] [CrossRef]
- Bansod, B.K.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 2017, 94, 443–455. [Google Scholar] [CrossRef]
- Buica, G.-O.; Lazar, I.-G.; Birzan, L.; Lete, C.; Prodana, M.; Enachescu, M.; Tecuceanu, V.; Stoian, A.B.; Ungureanu, E.-M. Azulene-ethylenediaminetetraacetic acid: A versatile molecule for colorimetric and electrochemical sensors for metal ions. Electrochim. Acta 2018, 263, 382–390. [Google Scholar] [CrossRef]
- Liu, Y.; Weerasooriya, R.; Chen, X. The metal-organic framework supported gold nanoparticles as a highly sensitive platform for electrochemical detection of methyl mercury species in the aqueous environment. J. Hazard. Mater. 2022, 431, 128608. [Google Scholar] [CrossRef]
- Zhong, J.; Zhao, H.; Cheng, Y.; Feng, T.; Lan, M.; Zuo, S. A high-performance electrochemical sensor for the determination of Pb(II) based on conductive dopamine polymer doped polypyrrole hydrogel. J. Electroanal. Chem. 2021, 902, 115815. [Google Scholar] [CrossRef]
- Eswaran, M.; Tsai, P.-C.; Wu, M.-T.; Ponnusamy, V.K. Novel nano-engineered environmental sensor based on polymelamine/graphitic-carbon nitride nanohybrid material for sensitive and simultaneous monitoring of toxic heavy metals. J. Hazard. Mater. 2021, 418, 126267. [Google Scholar] [CrossRef]
- Hasan, A.; Nanakali, N.M.Q.; Salihi, A.; Rasti, B.; Sharifi, M.; Attar, F.; Derakhshankhah, H.; Mustafa, I.A.; Abdulqadir, S.Z.; Falahati, M. Nanozyme-based sensing platforms for detection of toxic mercury ions: An alternative approach to conventional methods. Talanta 2020, 215, 120939. [Google Scholar] [CrossRef] [PubMed]
- Araujo, R.; Castro, A.C.M.; Fiuza, A. The Use of Nanoparticles in Soil and Water Remediation Processes. Mater. Today Proc. 2015, 2, 315–320. [Google Scholar] [CrossRef]
- Wang, J.; Shaheen, S.M.; Anderson, C.W.N.; Xing, Y.; Liu, S.; Xia, J.; Feng, X.; Rinklebe, J. Nanoactivated Carbon Reduces Mercury Mobility and Uptake by Oryza sativa L.: Mechanistic Investigation Using Spectroscopic and Microscopic Techniques. Environ. Sci. Technol. 2020, 54, 2698–2706. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, J.; Wen, T.; Liu, X.; Wang, Y.; Yang, H.; Sun, J.; Feng, J.; Dong, S.; Sun, J. Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid. Sci. Total. Environ. 2020, 699, 134341. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Co-ord. Chem. Rev. 2018, 356, 147–164. [Google Scholar] [CrossRef]
- Honeychurch, K.C. Screen-printed Electrochemical Sensors and Biosensors for Monitoring Metal Pollutants. Insciences J. 2012, 2, 1–51. [Google Scholar] [CrossRef]
- Tchekwagep, P.M.S.; Crapnell, R.D.; Banks, C.E.; Betlem, K.; Rinner, U.; Canfarotta, F.; Lowdon, J.W.; Eersels, K.; van Grinsven, B.; Peeters, M.; et al. A Critical Review on the Use of Molecular Imprinting for Trace Heavy Metal and Micropollutant Detection. Chemosensors 2022, 10, 296. [Google Scholar] [CrossRef]
- Martín-Yerga, D.; González-García, M.B. Electrochemical determination of mercury: A review. Talanta 2013, 116, 1091–1104. [Google Scholar] [CrossRef]
- Wang, J.; Tian, B. Screen-printed electrodes for stripping measurements of trace mercury. Anal. Chim. Acta 1993, 274, 1–6. [Google Scholar] [CrossRef]
- Bernalte, E.; Sánchez, C.M.; Gil, E.P. Gold nanoparticles-modified screen-printed carbon electrodes for anodic stripping voltammetric determination of mercury in ambient water samples. Sens. Actuators 2012, 161, 669–674. [Google Scholar] [CrossRef]
- Bernalte, E.; Sanchez, M.C.; Gil, P.E. Determination of mercury in indoor dust samples by ultrasonic probe microextraction and stripping voltammetry on gold nanoparticles-modified screen-printed electrodes. Talanta 2012, 9, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Bernalte, E.; Sanchez, M.C.; Gil, P.E. Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes. Anal. Chim. Acta 2011, 689, 60–64. [Google Scholar] [CrossRef]
- Mandil, A.; Idrissi, L.; Amine, A. Stripping voltammetric determination of mercury (II) and lead (II) using screen-printed electrodes modified with gold films, and metal ion preconcentration with thiol-modified magnetic particles. Microchim. Acta 2010, 170, 299–305. [Google Scholar] [CrossRef]
- Buica, G.-O.; Ivanov, A.A.; Lazar, I.-G.; Tatu, G.-L.; Omocea, C.; Birzan, L.; Ungureanu, E.-M. Colorimetric and voltammetric sensing of mercury ions using 2,2′-(ethane-1,2-diylbis((2-(azulen-2-ylamino)-2-oxoethyl)azanediyl))diacetic acid. J. Electroanal. Chem. 2019, 849, 113351. [Google Scholar] [CrossRef]
- EN ISO 12846:2012; Water Quality—Determination of Mercury—Method Using Atomic Absorption Spectrometry (AAS) with and without Enrichment. ISO: Geneva, Switzerland, 2012.
- Tanase, I.G.; Radu, G.L.; Pana, A.; Buleandra, M. Validation of Analytical Methods; Theoretical Principles and Case Studies; Printech Publishing House: Bucharest, Romania, 2007; pp. 185–199. (In Romanian) [Google Scholar]
- Taverniers, I.; Van Bockstaele, E.; De Loose, M. Analytical Method Validation and Quality Assurance in Pharmaceutical Sciences Encyclopedia: Drug Discovery, Development, and Manufacturing; Shayne, C., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 1–48. [Google Scholar]
- Van Reeuwijk, L.P. Guidelines for Quality Management in Soil and Plant Laboratories; ISRIC 74; FAO Soils Bulletin: Rome, Italy, 1998; pp. 92–96. [Google Scholar]
- Vasile, G.G.; Popa, D.E.; Buleandra, M.; David, I.G. An experimental design for the optimization of the extraction methods of metallic mobile fractions from environmental solid samples. Environ. Monit. Assess. 2018, 190, 609. [Google Scholar] [CrossRef]
- Vasile, G.G.; Arnold, G.L.; Buica, G.O.; Ungureanu, E.M. Determination of lead content in soft water using stripping voltammetry on a modified glassy carbon electrode. Rev. Chim. 2018, 69, 21–26. [Google Scholar] [CrossRef]
- Lazar, I.G.; Diacu, E.; Vasile, G.G.; Ungureanu, E.M.; Ivanov, A.A. Study of analytical parameters of a differential pulse voltammetric method using chemically modified electrodes for lead analysis in water. Rev. Chim. 2018, 69, 2311–2314. [Google Scholar] [CrossRef]
Added Concentration (µg/L) | Xaverage (µg/L) ± s (Standard Deviation) |
---|---|
20 | 22.9 ± 3.44 |
50 | 53.2 ± 7.52 |
80 | 79.7 ± 10.6 |
100 | 100 ± 12.6 |
150 | 147 ± 13.0 |
Added Concentration (µg/L) | Xaverage (µg/L) | Sr(µg/L) | r* (µg/L) | RSDr** (%) |
---|---|---|---|---|
20 | 22.9 | 3.44 | 9.64 | 15.0 |
50 | 53.2 | 7.52 | 21.1 | 14.1 |
80 | 79.7 | 10.6 | 29.7 | 13.3 |
100 | 100 | 12.6 | 35.2 | 12.6 |
150 | 147 | 13.0 | 36.3 | 8.80 |
Concentration/Parameter Determined | 20 µg/L | 50 µg/L | 100 µg/L |
---|---|---|---|
Xaverage, µg/L | 24.2 | 55.1 | 98.2 |
SR, µg/L | 7.52 | 10.0 | 12.3 |
R*, µg/L | 21.1 | 20.9 | 34.6 |
RSDR**, % | 28.1 | 18.2 | 12.6 |
Experiment | Factor | Result | ||
---|---|---|---|---|
A | B | C | ||
1 | + | + | + | Y1 |
2 | − | + | − | Y2 |
3 | + | − | + | Y3 |
4 | − | − | − | Y4 |
TEST 1 | Factor | Result | ||
pH (A) | Reaction Time, Minutes (B) | Acetate Buffer Concentration (C) | ||
Experiment 1 | 3.3 | 22 | 0.055 | T1-Y1 |
Experiment 2 | 2.7 | 22 | 0.045 | T1-Y2 |
Experiment 3 | 3.3 | 18 | 0.055 | T1-Y3 |
Experiment 4 | 2.7 | 18 | 0.045 | T1-Y4 |
TEST 2 | Factor | Result | ||
pH (A) | Reaction Time, Minutes (B) | Acetate Buffer Concentration (C) | ||
Experiment 1 | 3.1 | 22 | 0.055 | T2-Y1 |
Experiment 2 | 2.9 | 22 | 0.045 | T2-Y2 |
Experiment 3 | 3.1 | 18 | 0.055 | T2-Y3 |
Experiment 4 | 2.9 | 18 | 0.045 | T2-Y4 |
Experiment | T1-Y1 | T1-Y2 | T1-Y3 | T1-Y4 | T2-Y1 | T2-Y2 | T2-Y3 | T2-Y4 |
---|---|---|---|---|---|---|---|---|
Replicate 1 | 7.75 | 18.1 | 23.7 | 24.4 | 5.04 | 4.82 | 20.0 | 12.5 |
Replicate 2 | 10.1 | 12.1 | 21.3 | 27.3 | 6.37 | 7.56 | 29.2 | 16.9 |
Replicate 3 | 8.35 | 21.4 | 26.8 | 29.6 | 8.47 | 8.27 | 26.3 | 14.3 |
Replicate 4 | 9.8 | 15.5 | 29.6 | 23.0 | 5.51 | 5.47 | 19.5 | 19.5 |
Replicate 5 | 11.7 | 15.0 | 24.6 | 30.1 | 5.28 | 4.69 | 26.9 | 11.8 |
Replicate 6 | 9.78 | 16.0 | 39.3 | 24.2 | 9.29 | 6.04 | 24.8 | 16.8 |
Average | 9.60 | 16.4 | 27.5 | 26.4 | 6.66 | 6.14 | 24.4 | 15.3 |
Estimated Parameter | UM | Comparison Value | Quantifying the Influence of Factors | |||||
---|---|---|---|---|---|---|---|---|
Factor A | Factor B | Factor C | ||||||
ΣYA+ | ΣYA− | ΣYB+ | ΣYB− | ΣYC+ | ΣYC− | |||
ΣYF+/ΣYF− | µg/L | - | 37.1 | 42.8 | 26.0 | 53.9 | 37.1 | 42.8 |
Absolute effect | µg/L | 10.5 | 2.85 | 14.0 | 2.85 | |||
Relative effect | % | - | 15.2 | 108 | 15.2 |
Estimated Parameter | UM | Comparison Value | Quantifying the Influence of Factors | |||||
---|---|---|---|---|---|---|---|---|
Factor A | Factor B | Factor C | ||||||
ΣYA+ | ΣYA− | ΣYB+ | ΣYB− | ΣYC+ | ΣYC− | |||
ΣYF+/ΣYF− | µg/L | - | 31.1 | 21.4 | 12.8 | 39.7 | 31.1 | 21.4 |
Absolute effect | µg/L | 10.5 | 4.84 | 13.5 | 4.84 | |||
Relative effect | % | - | 31.1 | 210 | 31.1 |
Concentration, µg/L | Value ± Uncertainty, µg/L | Uncertainty, % |
---|---|---|
25 | 25.1 ± 7.80 | 31.1 |
50 | 56.3 ± 14.7 | 26.0 |
90 | 86.3 ± 17.6 | 20.4 |
Method | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 |
AAS-CV | 45.3 ± 4.08 | 20.2 ± 1.82 | 35.3 ± 2.19 | 52.1 ± 4.69 | 68.6 ± 6.17 | 78.3 ± 7.05 | 23.2 ± 2.09 | 74.9 ± 6.74 | 30.0 ± 2.70 |
EC lab | 44.1 ± 8.82 | 18.4 ± 3.69 * | 35.8 ± 7.16 | 58.7 ± 11.8 | 66.0 ± 13.2 | 75.9 ± 15.2 | 23.8 ± 4.76 | 77.4 ± 15.5 | 23.9 ± 4.77 |
EC on-site | 44.4 ± 8.89 | 20.2 ± 4.04 | 34.4 ± 6.89 | 58.2 ± 13.5 | 67.6 ± 6.17 | 75.9 ± 15.2 | 22.4 ± 4.48 | 78.4 ± 15.2 | 31.7 ± 6.35 |
Sample | P10 | P11 | P12 | P13 | P14 | P15 | P16 | P17 | |
AAS-CV | 21.8 ± 1.96 | 17.0 ± 1.53 | 36.1 ± 3.25 | 66.6 ± 5.99 | 21.9 ± 1.97 | 34.1 ± 3.07 | 50.8 ± 4.57 | 56.3 ± 5.07 | |
EC lab | 18.9 ± 3.78 * | 17.3 ± 3.45 * | 34.4 ± 6.88 | 63.2 ± 12.7 | 20.0 ± 4.01 | 32.5 ± 6.50 | 48.4 ± 9.68 | 51.8 ± 10.4 | |
EC on-site | 20.2 ± 4.04 | 18.2 ± 3.64 * | 31.9 ± 6.39 | 61.8 ± 12.4 | 23.0 ± 4.61 | 31.4 ± 6.29 | 48.0 ± 9.61 | 52.3 ± 10.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenea, A.-G.; Dinu, C.; Buica, G.-O.; Vasile, G.-G. Electrochemical System for Field Control of Hg2+ Concentration in Wastewater Samples. Sensors 2023, 23, 1084. https://doi.org/10.3390/s23031084
Tenea A-G, Dinu C, Buica G-O, Vasile G-G. Electrochemical System for Field Control of Hg2+ Concentration in Wastewater Samples. Sensors. 2023; 23(3):1084. https://doi.org/10.3390/s23031084
Chicago/Turabian StyleTenea, Anda-Gabriela, Cristina Dinu, George-Octavian Buica, and Gabriela-Geanina Vasile. 2023. "Electrochemical System for Field Control of Hg2+ Concentration in Wastewater Samples" Sensors 23, no. 3: 1084. https://doi.org/10.3390/s23031084
APA StyleTenea, A. -G., Dinu, C., Buica, G. -O., & Vasile, G. -G. (2023). Electrochemical System for Field Control of Hg2+ Concentration in Wastewater Samples. Sensors, 23(3), 1084. https://doi.org/10.3390/s23031084