Modern Electrochemical Biosensing Based on Nucleic Acids and Carbon Nanomaterials
Abstract
:1. Introduction
2. Classification and Basic Properties of Carbon Nanomaterials
3. Role of Carbon Nanomaterials and Their Composites in the Design of DNA Biosensors and Aptasensors
3.1. Intermediate Layers
3.1.1. Carbon Nanocomposite-Based Electrochemical DNA Aptasensors
3.1.2. Carbon Nanocomposite-Based Electrochemical DNA Genosensors
3.2. Transducers or Their Components
3.3. Independent Layers in Chemiresistor- and FET-Based DNA Biosensors
3.4. Electrochemical Markers
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater. 2019, 31, e1806739. [Google Scholar] [CrossRef]
- Grasso, G.; Zane, D.; Dragone, R. Field and Remote Sensors for Environmental Health and Food Safety Diagnostics: An Open Challenge. Biosensors 2022, 12, 285. [Google Scholar] [CrossRef]
- Sengupta, J.; Hussain, C.M. Decadal Journey of CNT-Based Analytical Biosensing Platforms in the Detection of Human Viruses. Nanomaterials 2022, 12, 285. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-F.; Zhao, X.; Yang, Z. Aptasensors for the Detection of Infectious Pathogens: Design Strategies and Point-of-Care Testing. Microchim. Acta 2022, 189, 443. [Google Scholar] [CrossRef] [PubMed]
- Arduini, F.; Cinti, S.; Scognamiglio, V.; Moscone, D. Nanomaterials in Electrochemical Biosensors for Pesticide Detection: Advances and Challenges in Food Analysis. Microchim. Acta 2016, 183, 2063–2083. [Google Scholar] [CrossRef]
- Li, F.; Yu, Z.; Han, X.; Lai, R.Y. Electrochemical Aptamer-Based Sensors for Food and Water Analysis: A Review. Anal. Chim. Acta 2019, 1051, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zheng, Z.; Li, X. Advances in Pesticide Biosensors: Current Status, Challenges, and Future Perspectives. Anal. Bioanal. Chem. 2013, 405, 63–90. [Google Scholar] [CrossRef] [PubMed]
- Pingarrón, J.M.; Yáñez-Sedeño, P.; Campuzano, S. New Tools of Electrochemistry at the Service of (Bio)Sensing: From Rational Designs to Electrocatalytic Mechanisms. J. Electroanal. Chem. 2021, 896, 115097. [Google Scholar] [CrossRef]
- Evtugyn, G.; Porfireva, A.; Shamagsumova, R.; Hianik, T. Advances in Electrochemical Aptasensors Based on Carbon Nanomaterials. Chemosensors 2020, 8, 96. [Google Scholar] [CrossRef]
- Palchetti, I.; Mascini, M. Electrochemical Nanomaterial-Based Nucleic Acid Aptasensors. Anal. Bioanal. Chem. 2012, 402, 3103–3114. [Google Scholar] [CrossRef]
- Alipour, E.; Norouzi, S.; Moradi, S. The Development of an Electrochemical DNA Biosensor Based on Quercetin as a New Electroactive Indicator for DNA Hybridization Detection. Anal. Methods 2021, 13, 719–729. [Google Scholar] [CrossRef]
- Ye, W.; Liu, T.; Zhang, W.; Zhu, M.; Liu, Z.; Kong, Y.; Liu, S. Marine Toxins Detection by Biosensors Based on Aptamers. Toxins 2019, 12, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alizadeh, M.; Azar, P.A.; Mozaffari, S.A.; Karimi-Maleh, H.; Tamaddon, A.-M. A DNA Based Biosensor Amplified With ZIF-8/Ionic Liquid Composite for Determination of Mitoxantrone Anticancer Drug: An Experimental/Docking Investigation. Front. Chem. 2020, 8, 814. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.B.N.; Maldonado, M.; Poch, D.; Sodia, T.; Smith, A.; Rowland, T.J.; Bonham, A.J. Electrochemical Dna Biosensor That Detects Early Celiac Disease Autoantibodies. Sensors 2021, 21, 2671. [Google Scholar] [CrossRef]
- Strehlitz, B.; Nikolaus, N.; Stoltenburg, R. Protein Detection with Aptamer Biosensors. Sensors 2008, 8, 4296–4307. [Google Scholar] [CrossRef] [PubMed]
- Jarczewska, M.; Szymczyk, A.; Zajda, J.; Olszewski, M.; Ziółkowski, R.; Malinowska, E. Recent Achievements in Electrochemical and Optical Nucleic Acids Based Detection of Metal Ions. Molecules 2022, 27, 7481. [Google Scholar] [CrossRef] [PubMed]
- Saidur, M.R.; Aziz, A.R.A.; Basirun, W.J. Recent Advances in DNA-Based Electrochemical Biosensors for Heavy Metal Ion Detection: A Review. Biosens. Bioelectron. 2017, 90, 125–139. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Hossain, M.M.; Tamiya, E. Electrochemical Biosensors for Medical and Food Applications. Electroanalysis 2008, 20, 616–626. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Faridbod, F.; Gupta, V.K.; Zamani, H.A. Electrochemical Sensors and Biosensors. Int. J. Electrochem. 2012, 2011, 352546. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, F.J.; Ozalp, V.C. Graphene and Other Nanomaterial-Based Electrochemical Aptasensors. Biosensors 2012, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wen, J.; Yan, H. Recent Applications of Carbon Nanomaterials for MicroRNA Electrochemical Sensing. Chem. Asian J. 2021, 16, 114–128. [Google Scholar] [CrossRef]
- Fojta, M.; Daňhel, A.; Havran, L.; Vyskočil, V. Recent Progress in Electrochemical Sensors and Assays for DNA Damage and Repair. TrAC Trends Anal. Chem. 2016, 79, 160–167. [Google Scholar] [CrossRef]
- Nandre, V.; Jadhav, Y.; Das, D.K.; Ahire, R.; Ghosh, S.; Jadkar, S.; Kodam, K.; Waghmode, S. Nanomaterials for Sensors: Synthesis and Applications; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 9780323857253. [Google Scholar]
- Baig, N.; Kammakakam, I.; Falath, W.; Kammakakam, I. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- He, X.; Han, H.; Shi, W.; Dong, J.; Lu, X.; Yang, W.; Lu, X. A Label-Free Electrochemical DNA Biosensor for Kanamycin Detection Based on Diblock DNA with Poly-Cytosine as a High Affinity Anchor on Graphene Oxide. Anal. Methods 2020, 12, 3462–3469. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, J.N.; Vij, V.; Kemp, K.C.; Kim, K.S. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS Nano 2016, 10, 46–80. [Google Scholar] [CrossRef] [Green Version]
- Pasinszki, T.; Krebsz, M.; Tung, T.T.; Losic, D. Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis. Sensors 2017, 17, 1919. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, S.; Guo, D.; Yu, P.; Li, D.; Ye, J.; Mao, L. Comparative Studies on Electrochemical Activity of Graphene Nanosheets and Carbon Nanotubes. Electrochem. Commun. 2009, 11, 1892–1895. [Google Scholar] [CrossRef]
- Padmakumari Kurup, C.; Abdullah Lim, S.; Ahmed, M.U. Nanomaterials as Signal Amplification Elements in Aptamer-Based Electrochemiluminescent Biosensors. Bioelectrochemistry 2022, 147, 108170. [Google Scholar] [CrossRef]
- Yi, K.; Yu, Y.; Tan, S.; Zhang, J.; Ye, T.; Liu, N.; Tang, X.; Zhang, L.; Huang, S. A Regulatable Gap-Electrical DNA Sensor Based on Gold Nanorods and Single-Walled Carbon Nanotubes. Microchem. J. 2022, 179, 107415. [Google Scholar] [CrossRef]
- Kong, X.; Bahri, M.; Djebbi, K.; Shi, B.; Zhou, D.; Tlili, C.; Wang, D. Graphene-Based Liquid Gated Field-Effect Transistor for Label-Free Detection of DNA Hybridization. In Proceedings of the 18th IEEE International Multi-Conference on Systems, Signals and Devices, SSD, Monastir, Tunisia, 22–25 March 2021; pp. 387–391. [Google Scholar]
- Sadighbayan, D.; Hasanzadeh, M.; Ghafar-Zadeh, E. Biosensing Based on Field-Effect Transistors (FET): Recent Progress and Challenges. TrAC Trends Anal. Chem. 2020, 133, 116067. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yu, J.; Gui, R.; Jin, H.; Xia, Y. Carbon Nanomaterials-Based Electrochemical Aptasensors. Biosens. Bioelectron. 2016, 79, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Crevillen, A.G.; Escarpa, A.; García, C.D. Chapter 1: Carbon-Based Nanomaterials in Analytical Chemistry. In Carbon-Based Nanomaterials in Analytical Chemistry; The Royal Society of Chemistry: London, UK, 2019; Volume 2019, ISBN 9781788011020. [Google Scholar]
- Wang, Z.; Dai, Z. Carbon Nanomaterial-Based Electrochemical Biosensors: An Overview. Nanoscale 2015, 7, 6420–6431. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.N. Graphene and Its Derivatives as Biomedical Materials: Future Prospects and Challenges. Interface Focus 2018, 8, 20170056. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, B.; Bulin, C.; Li, R.; Xing, R. High-Efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep. 2016, 6, 36143. [Google Scholar] [CrossRef] [Green Version]
- Magne, T.M.; de Oliveira Vieira, T.; Alencar, L.M.R.; Junior, F.F.M.; Gemini-Piperni, S.; Carneiro, S.V.; Fechine, L.M.U.D.; Freire, R.M.; Golokhvast, K.; Metrangolo, P.; et al. Graphene and Its Derivatives: Understanding the Main Chemical and Medicinal Chemistry Roles for Biomedical Applications. J. Nanostructure Chem. 2022, 12, 693–727. [Google Scholar] [CrossRef]
- Saifuddin, N.; Raziah, A.Z.; Junizah, A.R. Carbon Nanotubes: A Review on Structure and Their Interaction with Proteins. J. Chem. 2013, 2013, 676815. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wu, L.; de Perrot, M.; Zhao, X. Carbon Nanotubes: A Summary of Beneficial and Dangerous Aspects of an Increasingly Popular Group of Nanomaterials. Front. Oncol. 2021, 11, 693814. [Google Scholar] [CrossRef]
- Carrara, S.; Baj-Rossi, C.; Boero, C.; De Micheli, G. Do Carbon Nanotubes Contribute to Electrochemical Biosensing? Electrochim. Acta 2014, 128, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Shoukat, R.; Khan, M.I. Carbon Nanotubes: A Review on Properties, Synthesis Methods and Applications in Micro and Nanotechnology. Microsyst. Technol. 2021, 27, 4183–4192. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, M.; Chen, X.; Hou, X. Continuous Water-Water Hydrogen Bonding Network across the Rim of Carbon Nanotubes Facilitating Water Transport for Desalination. Nano Res. 2021, 14, 2171–2178. [Google Scholar] [CrossRef]
- Liu, J.; Li, R.; Yang, B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Cent. Sci. 2020, 6, 2179–2195. [Google Scholar] [CrossRef] [PubMed]
- Cayuela, A.; Soriano, M.L.; Carrillo-Carrión, C.; Valcárcel, M. Semiconductor and Carbon-Based Fluorescent Nanodots: The Need for Consistency. Chem. Commun. 2016, 52, 1311–1326. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Shimizu, Y.; Pyatenko, A.; Kawaguchi, K.; Koshizaki, N. Preparation of Carbon Quantum Dots with Tunable Photoluminescence by Rapid Laser Passivation in Ordinary Organic Solvents. Chem. Commun. 2011, 47, 932–934. [Google Scholar] [CrossRef]
- Tan, X.; Li, Y.; Li, X.; Zhou, S.; Fan, L.; Yang, S. Electrochemical Synthesis of Small-Sized Red Fluorescent Graphene Quantum Dots as a Bioimaging Platform. Chem. Commun. 2015, 51, 2544–2546. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.N.; Baker, G.A. Luminescent Carbon Nanodots: Emergent Nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.L.; Chen, B.B.; Li, C.M.; Huang, C.Z. Carbon Dots: Synthesis, Formation Mechanism, Fluorescence Origin and Sensing Applications. Green Chem. 2019, 21, 449–471. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, S.; Wang, J.; Yu, A.; Wei, G. Carbon Nanofiber-Based Functional Nanomaterials for Sensor Applications. Nanomaterials 2019, 9, 1045. [Google Scholar] [CrossRef] [Green Version]
- Al Mgheer, T.; Abdulrazzak, F.H. Oxidation of Multi-Walled Carbon Nanotubes in Acidic and Basic Piranha Mixture. Front. Nanosci. Nanotechnol. 2016, 2, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Rashid, J.I.A.; Yusof, N.A. The Strategies of DNA Immobilization and Hybridization Detection Mechanism in the Construction of Electrochemical DNA Sensor: A Review. Sens. Bio-Sens. Res. 2017, 16, 19–31. [Google Scholar] [CrossRef]
- Onaş, A.M.; Dascălu, C.; Raicopol, M.D.; Pilan, L. Critical Design Factors for Electrochemical Aptasensors Based on Target-Induced Conformational Changes: The Case of Small-Molecule Targets. Biosensors 2022, 12, 816. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, B.S.; Juhas, M. Recent Advances in Aptamer Discovery and Applications. Molecules 2019, 24, 941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.S.; Wang, F.; Ge, Y.; Lo, P.K. Recent Developments in Aptasensors for Diagnostic Applications. ACS Appl. Mater. Interfaces 2021, 13, 9329–9358. [Google Scholar] [CrossRef]
- Yan, S.-R.; Foroughi, M.M.; Safaei, M.; Jahani, S.; Ebrahimpour, N.; Borhani, F.; Rezaei Zade Baravati, N.; Aramesh-Boroujeni, Z.; Foong, L.K. A Review: Recent Advances in Ultrasensitive and Highly Specific Recognition Aptasensors with Various Detection Strategies. Int. J. Biol. Macromol. 2020, 155, 184–207. [Google Scholar] [CrossRef] [PubMed]
- Alkhamis, O.; Canoura, J.; Yu, H.; Liu, Y.; Xiao, Y. Innovative Engineering and Sensing Strategies for Aptamer-Based Small-Molecule Detection. TrAC Trends Anal. Chem. 2019, 121, 115699. [Google Scholar] [CrossRef] [PubMed]
- Shan, H.; Li, X.; Liu, L.; Song, D.; Wang, Z. Recent Advances in Nanocomposite-Based Electrochemical Aptasensors for the Detection of Toxins. J. Mater. Chem. B 2020, 8, 5808–5825. [Google Scholar] [CrossRef]
- Jin, H.; Zhao, C.; Gui, R.; Gao, X.; Wang, Z. Reduced Graphene Oxide/Nile Blue/Gold Nanoparticles Complex-Modified Glassy Carbon Electrode Used as a Sensitive and Label-Free Aptasensor for Ratiometric Electrochemical Sensing of Dopamine. Anal. Chim. Acta 2018, 1025, 154–162. [Google Scholar] [CrossRef]
- Wei, B.; Zhong, H.; Wang, L.; Liu, Y.; Xu, Y.; Zhang, J.; Xu, C.; He, L.; Wang, H. Facile Preparation of a Collagen-Graphene Oxide Composite: A Sensitive and Robust Electrochemical Aptasensor for Determining Dopamine in Biological Samples. Int. J. Biol. Macromol. 2019, 135, 400–406. [Google Scholar] [CrossRef]
- Jarczewska, M.; Sheelam, S.R.; Ziółkowski, R.; Górski, L. A Label-Free Electrochemical DNA Aptasensor for the Detection of Dopamine. J. Electrochem. Soc. 2016, 163, B26–B31. [Google Scholar] [CrossRef]
- Mahmoudi-Moghaddam, H.; Tajik, S.; Beitollahi, H. A New Electrochemical DNA Biosensor Based on Modified Carbon Paste Electrode Using Graphene Quantum Dots and Ionic Liquid for Determination of Topotecan. Microchem. J. 2019, 150, 104085. [Google Scholar] [CrossRef]
- Mirzaie, A.; Hasanzadeh, M.; Jouyban, A. Cross-Linked Chitosan/Thiolated Graphene Quantum Dots as a Biocompatible Polysaccharide towards Aptamer Immobilization. Int. J. Biol. Macromol. 2019, 123, 1091–1105. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Li, Y.; Xie, M.; Yang, Q.; Liu, T. The Electrochemical Behaviors and Kinetics of AuNPs/N, S-GQDs Composite Electrode: A Novel Label-Free Amplified BPA Aptasensor with Extreme Sensitivity and Selectivity. J. Mol. Liq. 2020, 320, 114384. [Google Scholar] [CrossRef]
- Majumdar, S.; Thakur, D.; Chowdhury, D. DNA Carbon-Nanodots Based Electrochemical Biosensor for Detection of Mutagenic Nitrosamines. ACS Appl. Bio Mater. 2020, 3, 1796–1803. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Maleh, H.; Alizadeh, M.; Orooji, Y.; Karimi, F.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K.; et al. Guanine-Based DNA Biosensor Amplified with Pt/SWCNTs Nanocomposite as Analytical Tool for Nanomolar Determination of Daunorubicin as an Anticancer Drug: A Docking/Experimental Investigation. Ind. Eng. Chem. Res. 2021, 60, 816–823. [Google Scholar] [CrossRef]
- Chand, R.; Neethirajan, S. Microfluidic Platform Integrated with Graphene-Gold Nano-Composite Aptasensor for One-Step Detection of Norovirus. Biosens. Bioelectron. 2017, 98, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Farzadfard, A.; Shayeh, J.S.; Habibi-Rezaei, M.; Omidi, M. Modification of Reduced Graphene/Au-Aptamer to Develop an Electrochemical Based Aptasensor for Measurement of Glycated Albumin. Talanta 2020, 211, 120722. [Google Scholar] [CrossRef]
- Kakkar, S.; Chauhan, S.; Bharti; Rohit, M.; Bhalla, V. Conformational Switching of Aptamer Biointerfacing Graphene-Gold Nanohybrid for Ultrasensitive Label-Free Sensing of Cardiac Troponin I. Bioelectrochemistry 2023, 150, 108348. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, X.; Li, Y.; Ren, Y.; Zhang, C.; Wang, P.; Xu, Z.; Li, X.; Chen, Z.; Dong, Y. An Electrochemical Sandwich Immunosensor for Cardiac Troponin I by Using Nitrogen/Sulfur Co-Doped Graphene Oxide Modified with Au@Ag Nanocubes as Amplifiers. Microchim. Acta 2019, 186, 416. [Google Scholar] [CrossRef]
- Crulhas, B.P.; Basso, C.R.; Parra, J.P.R.L.L.; Castro, G.R.; Pedrosa, V.A. Reduced Graphene Oxide Decorated with AuNPs as a New Aptamer-Based Biosensor for the Detection of Androgen Receptor from Prostate Cells. J. Sens. 2019, 2019, 5805609. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Bharti, A.; Kaur, N.; Singh, S.; Prabhakar, N. An Electrochemical Aptasensor Based on Gold Nanoparticles and Graphene Oxide Doped Poly(3,4-Ethylenedioxythiophene) Nanocomposite for Detection of MUC1. J. Electroanal. Chem. 2018, 813, 102–108. [Google Scholar] [CrossRef]
- Wu, L.; Lu, X.; Fu, X.; Wu, L.; Liu, H. Gold Nanoparticles Dotted Reduction Graphene Oxide Nanocomposite Based Electrochemical Aptasensor for Selective, Rapid, Sensitive and Congener-Specific PCB77 Detection. Sci. Rep. 2017, 7, 5191. [Google Scholar] [CrossRef]
- Hu, Y.; Xie, H.; Hu, J.; Yang, D. Disposable Electrochemical Aptasensor Based on Graphene Oxide-DNA Complex as Signal Amplifier towards Ultrasensitive Detection of Ochratoxin A. Micromachines 2022, 13, 834. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Huang, Y.; Cui, H.; Li, L.; Ding, Y. A Molecularly Imprinted Electrochemical Aptasensor Based on Zinc Oxide and Co-Deposited Gold Nanoparticles/Reduced Graphene Oxide Composite for Detection of Amoxicillin. Microchim. Acta 2022, 189, 421. [Google Scholar] [CrossRef] [PubMed]
- Aydoğdu Tığ, G.; Pekyardımcı, Ş. An Electrochemical Sandwich-Type Aptasensor for Determination of Lipocalin-2 Based on Graphene Oxide/Polymer Composite and Gold Nanoparticles. Talanta 2020, 210, 120666. [Google Scholar] [CrossRef]
- Moreno, M.; García-Sacristán, A.; Martín, M.E.; González, V.M. Enzyme-Linked Oligonucleotide Assay (ELONA); Springer: New York, NY, USA, 2023; Volume 2570. [Google Scholar]
- Upan, J.; Youngvises, N.; Tuantranont, A.; Karuwan, C.; Banet, P.; Aubert, P.-H.; Jakmunee, J. A Simple Label-Free Electrochemical Sensor for Sensitive Detection of Alpha-Fetoprotein Based on Specific Aptamer Immobilized Platinum Nanoparticles/Carboxylated-Graphene Oxide. Sci. Rep. 2021, 11, 13969. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, F.; Wang, Z.; Liang, Q. A Graphene Oxide-Based Label-Free Electrochemical Aptasensor for the Detection of Alpha-Fetoprotein. Biosens. Bioelectron. 2018, 112, 186–192. [Google Scholar] [CrossRef]
- Waiwinya, W.; Putnin, T.; Pimalai, D.; Chawjiraphan, W.; Sathirapongsasuti, N.; Japrung, D. Immobilization-Free Electrochemical Sensor Coupled with a Graphene-Oxide-Based Aptasensor for Glycated Albumin Detection. Biosensors 2021, 11, 85. [Google Scholar] [CrossRef]
- Zeng, S.; Chen, L.; Wang, Y.; Chen, J. Exploration on the Mechanism of DNA Adsorption on Graphene and Graphene Oxide via Molecular Simulations. J. Phys. D Appl. Phys. 2015, 48, 275402. [Google Scholar] [CrossRef]
- Sastry, S.S.M.; Panjikar, S.; Raman, R.K.S. Graphene and Graphene Oxide as a Support for Biomolecules in the Development of Biosensors. Nanotechnol. Sci. Appl. 2021, 14, 197–220. [Google Scholar] [CrossRef]
- Hao, N.; Hua, R.; Chen, S.; Zhang, Y.; Zhou, Z.; Qian, J.; Liu, Q.; Wang, K. Multiple Signal-Amplification via Ag and TiO2 Decorated 3D Nitrogen Doped Graphene Hydrogel for Fabricating Sensitive Label-Free Photoelectrochemical Thrombin Aptasensor. Biosens. Bioelectron. 2018, 101, 14–20. [Google Scholar] [CrossRef]
- Park, Y.; Hong, M.-S.; Lee, W.-H.; Kim, J.-G.; Kim, K. Highly Sensitive Electrochemical Aptasensor for Detecting the Vegf165 Tumor Marker with Pani/Cnt Nanocomposites. Biosensors 2021, 11, 114. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, X.; Geng, L.; Wang, Y. Label-Free Electrochemical Aptasensor for Sensitive Detection of Malachite Green Based on Au Nanoparticle/Graphene Quantum Dots/Tungsten Disulfide Nanocomposites. Nanomaterials 2019, 9, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Hu, S.; Zhang, R.; Gu, Y.; Li, Y.; Jia, Y. Porous Graphene Oxide Enhanced Aptamer Specific Circulating-Tumor-Cell Sensing Interface on Light Addressable Potentiometric Sensor: Clinical Application and Simulation. ACS Appl. Mater. Interfaces 2019, 11, 8704–8709. [Google Scholar] [CrossRef] [PubMed]
- El Goumi, Y. Electrochemical Genosensors: Definition and Fields of Application. Int. J. Biosens. Bioelectron. 2017, 3, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Babaei, A.; Pouremamali, A.; Rafiee, N.; Sohrabi, H.; Mokhtarzadeh, A.; de la Guardia, M. Genosensors as an Alternative Diagnostic Sensing Approaches for Specific Detection of Virus Species: A Review of Common Techniques and Outcomes. TrAC Trends Anal. Chem. 2022, 155, 116686. [Google Scholar] [CrossRef] [PubMed]
- Razmi, N.; Hasanzadeh, M.; Willander, M.; Nur, O. Electrochemical Genosensor Based on Gold Nanostars for the Detection of Escherichia Coli O157:H7 DNA. Anal. Methods 2022, 14, 1562–1570. [Google Scholar] [CrossRef]
- Yang, T.; Chen, H.; Qiu, Z.; Yu, R.; Luo, S.; Li, W.; Jiao, K. Direct Electrochemical Vibrio DNA Sensing Adopting Highly Stable Graphene-Flavin Mononucleotide Aqueous Dispersion Modified Interface. ACS Appl. Mater. Interfaces 2018, 10, 4540–4547. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Hou, C.; Zhao, Y.; Geng, X.; Samalo, M.; Yang, H.; Bian, M.; Huo, D. An Enzyme-Free Sensitive Electrochemical MicroRNA-16 Biosensor by Applying a Multiple Signal Amplification Strategy Based on Au/PPy–RGO Nanocomposite as a Substrate. Talanta 2019, 196, 329–336. [Google Scholar] [CrossRef]
- Lee, J.; Morita, M.; Takemura, K.; Park, E.Y. A Multi-Functional Gold/Iron-Oxide Nanoparticle-CNT Hybrid Nanomaterial as Virus DNA Sensing Platform. Biosens. Bioelectron. 2018, 102, 425–431. [Google Scholar] [CrossRef]
- Safavieh, M.; Kaul, V.; Khetani, S.; Singh, A.; Dhingra, K.; Kanakasabapathy, M.K.; Draz, M.S.; Memic, A.; Kuritzkes, D.R.; Shafiee, H. Paper Microchip with a Graphene-Modified Silver Nano-Composite Electrode for Electrical Sensing of Microbial Pathogens. Nanoscale 2017, 9, 1852–1861. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, S.; Karadurmus, L.; Dogan-Topal, B.; Taskin-Tok, T.; Shah, A.; Ozkan, S.A. Sensitive Nucleic Acid Detection at NH2-MWCNTs Modified Glassy Carbon Electrode and Its Application for Monitoring of Gemcitabine-DNA Interaction. Electroanalysis 2020, 32, 912–922. [Google Scholar] [CrossRef]
- Haque, M.H.; Gopalan, V.; Yadav, S.; Islam, M.N.; Eftekhari, E.; Li, Q.; Carrascosa, L.G.; Nguyen, N.-T.; Lam, A.K.; Shiddiky, M.J.A. Detection of Regional DNA Methylation Using DNA-Graphene Affinity Interactions. Biosens. Bioelectron. 2017, 87, 615–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozkan-Ariksoysal, D.; Kayran, Y.U.; Yilmaz, F.F.; Ciucu, A.A.; David, I.G.; David, V.; Hosgor-Limoncu, M.; Ozsoz, M. DNA-Wrapped Multi-Walled Carbon Nanotube Modified Electrochemical Biosensor for the Detection of Escherichia Coli from Real Samples. Talanta 2017, 166, 27–35. [Google Scholar] [CrossRef]
- Xiang, Q.; Huang, J.; Huang, H.; Mao, W.; Ye, Z. A Label-Free Electrochemical Platform for the Highly Sensitive Detection of Hepatitis B Virus DNA Using Graphene Quantum Dots. RSC Adv. 2018, 8, 1820–1825. [Google Scholar] [CrossRef] [Green Version]
- García-Mendiola, T.; Requena-Sanz, S.; Martínez-Periñán, E.; Bravo, I.; Pariente, F.; Lorenzo, E. Influence of Carbon Nanodots on DNA-Thionine Interaction. Application to Breast Cancer Diagnosis. Electrochim. Acta 2020, 353, 136522. [Google Scholar] [CrossRef]
- García-Mendiola, T.; Bravo, I.; López-Moreno, J.M.; Pariente, F.; Wannemacher, R.; Weber, K.; Popp, J.; Lorenzo, E. Carbon Nanodots Based Biosensors for Gene Mutation Detection. Sens. Actuators B Chem. 2018, 256, 226–233. [Google Scholar] [CrossRef]
- Huang, Q.; Lin, X.; Zhu, J.-J.; Tong, Q.-X. Pd-Au@carbon Dots Nanocomposite: Facile Synthesis and Application as an Ultrasensitive Electrochemical Biosensor for Determination of Colitoxin DNA in Human Serum. Biosens. Bioelectron. 2017, 94, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Jie, G.; Zhou, Q.; Jie, G. Graphene Quantum Dots-Based Electrochemiluminescence Detection of DNA Using Multiple Cycling Amplification Strategy. Talanta 2019, 194, 658–663. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, J. Length-Dependent Diblock DNA with Poly-Cytosine (Poly-C) as High-Affinity Anchors on Graphene Oxide. Langmuir 2018, 34, 1171–1177. [Google Scholar] [CrossRef]
- Bahri, M.; Amin Elaguech, M.; Nasraoui, S.; Djebbi, K.; Kanoun, O.; Qin, P.; Tlili, C.; Wang, D. Laser-Induced Graphene Electrodes for Highly Sensitive Detection of DNA Hybridization via Consecutive Cytosines (PolyC)-DNA-Based Electrochemical Biosensors. Microchem. J. 2023, 185, 108208. [Google Scholar] [CrossRef]
- Jaroenram, W.; Kampeera, J.; Arunrut, N.; Karuwan, C.; Sappat, A.; Khumwan, P.; Jaitrong, S.; Boonnak, K.; Prammananan, T.; Chaiprasert, A.; et al. Graphene-Based Electrochemical Genosensor Incorporated Loop-Mediated Isothermal Amplification for Rapid on-Site Detection of Mycobacterium Tuberculosis. J. Pharm. Biomed. Anal. 2020, 186, 113333. [Google Scholar] [CrossRef]
- Kampeera, J.; Pasakon, P.; Karuwan, C.; Arunrut, N.; Sappat, A.; Sirithammajak, S.; Dechokiattawan, N.; Sumranwanich, T.; Chaivisuthangkura, P.; Ounjai, P.; et al. Point-of-Care Rapid Detection of Vibrio Parahaemolyticus in Seafood Using Loop-Mediated Isothermal Amplification and Graphene-Based Screen-Printed Electrochemical Sensor. Biosens. Bioelectron. 2019, 132, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.; Dey, A.; Uppal, S.; Alexander, R.; Kaushal, A.; Misra, H.S.; Dasgupta, K. Label-Free Rapid Electrochemical Detection of DNA Hybridization Using Ultrasensitive Standalone CNT Aerogel Biosensor. Biosens. Bioelectron. 2021, 191, 113480. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Lee, E.-C. Highly Selective, Reusable Electrochemical Impedimetric DNA Sensors Based on Carbon Nanotube/Polymer Composite Electrode without Surface Modification. Biosens. Bioelectron. 2018, 118, 16–22. [Google Scholar] [CrossRef]
- Gulati, P.; Mishra, P.; Khanuja, M.; Narang, J.; Islam, S.S. Nano-Moles Detection of Tumor Specific Biomarker DNA for Colorectal Cancer Detection Using Vertically Aligned Multi-Wall Carbon Nanotubes Based Flexible Electrodes. Process Biochem. 2020, 90, 184–192. [Google Scholar] [CrossRef]
- Mondal, J.; An, J.M.; Surwase, S.S.; Chakraborty, K.; Sutradhar, S.C.; Hwang, J.; Lee, J.; Lee, Y.-K. Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform. Biosensors 2022, 12, 731. [Google Scholar] [CrossRef]
- Nasture, A.-M.; Ionete, E.I.; Lungu, F.A.; Spiridon, S.I.; Patularu, L.G. Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis. Chemosensors 2022, 10, 161. [Google Scholar] [CrossRef]
- Fu, Y.; Romay, V.; Liu, Y.; Ibarlucea, B.; Baraban, L.; Khavrus, V.; Oswald, S.; Bachmatiuk, A.; Ibrahim, I.; Rümmeli, M.; et al. Chemiresistive Biosensors Based on Carbon Nanotubes for Label-Free Detection of DNA Sequences Derived from Avian Influenza Virus H5N1. Sens. Actuators B Chem. 2017, 249, 691–699. [Google Scholar] [CrossRef]
- Weaver, S.; Mohammadi, M.H.; Nakatsuka, N. Aptamer-Functionalized Capacitive Biosensors. Biosens. Bioelectron. 2023, 224, 115014. [Google Scholar] [CrossRef]
- Li, T.; Liang, Y.; Li, J.; Yu, Y.; Xiao, M.-M.; Ni, W.; Zhang, Z.; Zhang, G.-J. Carbon Nanotube Field-Effect Transistor Biosensor for Ultrasensitive and Label-Free Detection of Breast Cancer Exosomal MiRNA21. Anal. Chem. 2021, 93, 15501–15507. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Peng, Z.; Li, H.; Wang, Z.; Mu, Y.; Zhang, G.; Chen, S.; Liu, S.; Wang, G.; Liu, C.; et al. Suspended CNT-Based FET Sensor for Ultrasensitive and Label-Free Detection of DNA Hybridization. Biosens. Bioelectron. 2019, 137, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhang, Y.; Ren, Q.; Wang, X.; Zhu, J.; Yin, F.; Li, Z.; Zhang, M. Tetrahedral DNA Nanostructure Based Biosensor for High-Performance Detection of Circulating Tumor DNA Using All-Carbon Nanotube Transistor. Biosens. Bioelectron. 2022, 197, 113785. [Google Scholar] [CrossRef]
- Xu, S.; Zhan, J.; Man, B.; Jiang, S.; Yue, W.; Gao, S.; Guo, C.; Liu, H.; Li, Z.; Wang, J.; et al. Real-Time Reliable Determination of Binding Kinetics of DNA Hybridization Using a Multi-Channel Graphene Biosensor. Nat. Commun. 2017, 8, 14902. [Google Scholar] [CrossRef] [Green Version]
- Halima, H.B.; Errachid, A.; Jaffrezic-Renault, N. Electrochemical Affinity Sensors Using Field Effect Transducer Devices for Chemical Analysis. Electroanalysis 2023, 35, e202100451. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, Z.; Wang, X.; Huang, C.; Lin, Q.; Zhao, X.; Pan, Y. A Flexible and Regenerative Aptameric Graphene–Nafion Biosensor for Cytokine Storm Biomarker Monitoring in Undiluted Biofluids toward Wearable Applications. Adv. Funct. Mater. 2021, 31, 2005958. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, Z.; Yu, S.; Huang, C.; Pan, Y.; Zhao, X. A Wearable and Deformable Graphene-Based Affinity Nanosensor for Monitoring of Cytokines in Biofluids. Nanomaterials 2020, 10, 1503. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Y.; Jin, W.; Hu, Y.; Cui, Y. Carbon Nanotube Field-Effect Transistor-Based Chemical and Biological Sensors. Sensors 2021, 21, 995. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Liu, L.; Li, J.; Gao, L. Sensors Based on the Carbon Nanotube Field-Effect Transistors for Chemical and Biological Analyses. Biosensors 2022, 12, 776. [Google Scholar] [CrossRef]
- Chao, L.; Liang, Y.; Hu, X.; Shi, H.; Xia, T.; Zhang, H.; Xia, H. Recent Advances in Field Effect Transistor Biosensor Technology for Cancer Detection: A Mini Review. J. Phys. D Appl. Phys. 2022, 55, 153001. [Google Scholar] [CrossRef]
- Kokkinos, C. Electrochemical DNA Biosensors Based on Labeling with Nanoparticles. Nanomaterials 2019, 9, 1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soler, M.; Lechuga, L.M. Biochemistry Strategies for Label-Free Optical Sensor Biofunctionalization: Advances towards Real Applicability. Anal. Bioanal. Chem. 2022, 414, 5071–5085. [Google Scholar] [CrossRef] [PubMed]
- Kurup, C.P.; Mohd-Naim, N.F.; Ahmed, M.U. Recent Trends in Nanomaterial-Based Signal Amplification in Electrochemical Aptasensors. Crit. Rev. Biotechnol. 2022, 42, 794–812. [Google Scholar] [CrossRef] [PubMed]
- Andryukov, B.G.; Besednova, N.N.; Romashko, R.V.; Zaporozhets, T.S.; Efimov, T.A. Label-Free Biosensors for Laboratory-Based Diagnostics of Infections: Current Achievements and New Trends. Biosensors 2020, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Deng, K.; Liu, X.; Li, C.; Huang, H. Sensitive Electrochemical Sensing Platform for MicroRNAs Detection Based on Shortened Multi-Walled Carbon Nanotubes with High-Loaded Thionin. Biosens. Bioelectron. 2018, 117, 168–174. [Google Scholar] [CrossRef]
- Han, S.; Liu, W.; Zheng, M.; Wang, R. Label-Free and Ultrasensitive Electrochemical DNA Biosensor Based on Urchinlike Carbon Nanotube-Gold Nanoparticle Nanoclusters. Anal. Chem. 2020, 92, 4780–4787. [Google Scholar] [CrossRef] [PubMed]
- Si, F.; Liu, Z.; Li, J.; Yang, H.; Liu, Y.; Kong, J. Sensitive Electrochemical Detection of A549 Exosomes Based on DNA/Ferrocene-Modified Single-Walled Carbon Nanotube Complex. Anal. Biochem. 2023, 660, 114971. [Google Scholar] [CrossRef]
- Cao, J.-T.; Yang, J.-J.; Zhao, L.-Z.; Wang, Y.-L.; Wang, H.; Liu, Y.-M.; Ma, S.-H. Graphene Oxide@gold Nanorods-Based Multiple-Assisted Electrochemiluminescence Signal Amplification Strategy for Sensitive Detection of Prostate Specific Antigen. Biosens. Bioelectron. 2018, 99, 92–98. [Google Scholar] [CrossRef]
- Zhao, H.; Niu, Z.; Chen, K.; Chen, L.; Wang, Z.; Lan, M.; Shi, J.; Huang, W. A Novel Sandwich-Type Electrochemical Biosensor Enabling Sensitive Detection of Circulating Tumor DNA. Microchem. J. 2021, 171, 106783. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with Enzyme-like Characteristics (Nanozymes): Next-Generation Artificial Enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 2019, 119, 4357–4412. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhou, Y.; Ren, J.; Qu, X. Carbon Nanozymes: Enzymatic Properties, Catalytic Mechanism, and Applications. Angew. Chem. Int. Ed. 2018, 57, 9224–9237. [Google Scholar] [CrossRef] [PubMed]
- Mahmudunnabi, R.G.; Farhana, F.Z.; Kashaninejad, N.; Firoz, S.H.; Shim, Y.-B.; Shiddiky, M.J.A. Nanozyme-Based Electrochemical Biosensors for Disease Biomarker Detection. Analyst 2020, 145, 4398–4420. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Kou, F.; Xu, H.; Han, Y.; Yang, G.; Huang, X.; Chen, W.; Chi, Y.; Lin, Z. Label-Free Ochratoxin A Electrochemical Aptasensor Based on Target-Induced Noncovalent Assembly of Peroxidase-like Graphitic Carbon Nitride Nanosheet. Sens. Actuators B Chem. 2018, 270, 263–269. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Xu, W.; Leng, X.; Wang, H.; Guo, Y.; Huang, J. A Novel Sandwich-Type Electrochemical Aptasensor Based on GR-3D Au and Aptamer-AuNPs-HRP for Sensitive Detection of Oxytetracycline. Biosens. Bioelectron. 2017, 88, 181–187. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wang, F.; Chi, H.; Zhao, G.; Zhang, Y.; Li, T.; Wei, Q. Electrochemical Aptasensor Based on Gold Modified Thiol Graphene as Sensing Platform and Gold-Palladium Modified Zirconium Metal-Organic Frameworks Nanozyme as Signal Enhancer for Ultrasensitive Detection of Mercury Ions. J. Colloid Interface Sci. 2022, 606, 510–517. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Dai, G.; Luo, F.; Chu, Z.; Geng, X.; He, P.; Zhang, F.; Wang, Q. A Ratiometric Electrochemical Biosensor for Glycated Albumin Detection Based on Enhanced Nanozyme Catalysis of Cuprous Oxide-Modified Reduced Graphene Oxide Nanocomposites. J. Mater. Chem. B 2021, 9, 9324–9332. [Google Scholar] [CrossRef]
- Li, J.; Lee, E.-C. Functionalized Multi-Wall Carbon Nanotubes as an Efficient Additive for Electrochemical DNA Sensor. Sens. Actuators B Chem. 2017, 239, 652–659. [Google Scholar] [CrossRef]
- Kamali, H.; Golmohammadzadeh, S.; Zare, H.; Nosrati, R.; Fereidouni, M.; Safarpour, H. The Recent Advancements in the Early Detection of Cancer Biomarkers by DNAzyme-Assisted Aptasensors. J. Nanobiotechnol. 2022, 20, 438. [Google Scholar] [CrossRef]
- Shekari, Z.; Zare, H.R.; Falahati, A. Electrochemical Sandwich Aptasensor for the Carcinoembryonic Antigen Using Graphene Quantum Dots, Gold Nanoparticles and Nitrogen Doped Graphene Modified Electrode and Exploiting the Peroxidase-Mimicking Activity of a G-Quadruplex DNAzyme. Microchim. Acta 2019, 186, 530. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, H.; Mohammadi, S.; Li, X.; Fu, G.; Li, X. Microfluidic Platforms Integrated with Nano-Sensors for Point-of-Care Bioanalysis. TrAC Trends Anal. Chem. 2022, 157, 116806. [Google Scholar] [CrossRef]
- Palumbo, A.; Li, Z.; Yang, E.-H. Trends on Carbon Nanotube-Based Flexible and Wearable Sensors via Electrochemical and Mechanical Stimuli: A Review. IEEE Sens. J. 2022, 22, 20102–20125. [Google Scholar] [CrossRef]
- Wan, Z.; Umer, M.; Lobino, M.; Thiel, D.; Nguyen, N.-T.; Trinchi, A.; Shiddiky, M.J.A.; Gao, Y.; Li, Q. Laser Induced Self-N-Doped Porous Graphene as an Electrochemical Biosensor for Femtomolar MiRNA Detection. Carbon 2020, 163, 385–394. [Google Scholar] [CrossRef]
- McCourt, K.M.; Cochran, J.; Abdelbasir, S.M.; Carraway, E.R.; Tzeng, T.-R.J.; Tsyusko, O.V.; Vanegas, D.C. Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. Biosensors 2022, 12, 1082. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.-C.; Li, S.; Xiao, R.; Ling, Y.; Li, Q.; Hou, X.; Wang, X. One-Step Exfoliation/Etching Method to Produce Chitosan-Stabilized Holey Graphene Nanosheets for Superior DNA Adsorption. ACS Appl. Bio Mater. 2020, 3, 8542–8550. [Google Scholar] [CrossRef]
- Pareek, S.; Jain, U.; Bharadwaj, M.; Saxena, K.; Roy, S.; Chauhan, N. An Ultrasensitive Electrochemical DNA Biosensor for Monitoring Human Papillomavirus-16 (HPV-16) Using Graphene Oxide/Ag/Au Nano-Biohybrids. Anal. Biochem. 2023, 663, 115015. [Google Scholar] [CrossRef] [PubMed]
- Fenzl, C.; Nayak, P.; Hirsch, T.; Wolfbeis, O.S.; Alshareef, H.N.; Baeumner, A.J. Laser-Scribed Graphene Electrodes for Aptamer-Based Biosensing. ACS Sens. 2017, 2, 616–620. [Google Scholar] [CrossRef]
Carbon Nanomaterial Shape | 0D | 1D | 2D |
---|---|---|---|
Example of carbon nanomaterial |
|
|
|
Nanomaterial/Composite | Analyte | Signal Source | Detection | Linear Range LOD | Ref. |
---|---|---|---|---|---|
GO/Nile blue/AuNPs | dopamine | Methylene blue redox marker (in solution) | SWV | 10 nM–0.2 mM 1 nM | [61] |
GCSC/GO composite | dopamine | Redox active analyte | DPV/EIS | 1.0–1000.0 nM 0.75 nM | [62] |
rGO/AuNPs | dopamine | Redox active analyte | EIS | 5.0–75.0 μM 3.36 μM | [63] |
carbon paste/GQDs/ionic liquid | topotecan | Redox active analyte | DPV | 0.35–100 μM 0.1 μM | [64] |
cross-linked chitosan/thiolated GQDs/AuNPs | ractopamine | [Fe(CN)6]3−/4− redox marker (in solution) | DPV | 0.0044 fM–19.55 μM 0.0044 fM | [65] |
N,S-GQDs/AuNPs | bisphenol A | [Fe(CN)6]3−/4− redox marker (in solution) | DPV | 0.1–10.0 μM 0.03 μM | [66] |
Chitosan-coated CNDs | mutagenic nitrosamines (NDMA and NDEA) | [Fe(CN)6]3−/4− redox marker (in solution) | DPV | NDMA— 9.9–740.0 nM NDEA—9.6–402.0 nM NDMA—9.9 nM NDEA—9.6 nM | [67] |
Pt/SWCNTs nanocomposite | daunorubicin | Analyte-DNA receptor complexes (guanines) | DPV/EIS | 4.0 nM–250.0 μM 1.0 nM | [68] |
GO/AuNPs | norovirus | Ferrocene attached to DNA probe | DPV | 100 pM–3.5 nM 100 pM | [69] |
rGO/AuNPs | glycated human serum albumin | [Fe(CN)6]3−/4− redox marker (in solution) | SWV/EIS | 2.0–10.0 μg/mL 0.07 μg/mL | [70] |
GO/AuNPs | troponin I | [Fe(CN)6]3−/4− redox marker (in solution) | SWV | 0.001–1000.0 pg/mL 0.001 pg/mL | [71] |
GO/AuNPs | androgen receptor | Methylene blue attached to DNA probe | SWV/EIS | 0.0–110.0 ng/mL 0.5 ng/mL | [73] |
P(ATT) polymer/GO composite | lipocalin- 2 | Alkaline phosphatase (catalyst) and naphthyl phosphate | DPV | 1.0–1000.0 ng/mL 0.3 ng/mL | [78] |
GO-COOH/PtNPs | alpha-fetoprotein | Hydroquinone redox marker (in solution) | SWV | 3.0–30.0 ng/mL 1.22 ng/mL | [80] |
GO/NH2-Apt complex | alpha-fetoprotein | [Fe(CN)6]3−/4− redox marker (in solution) | CV/EIS | 0.01–100.0 ng/mL 3 pg/mL | [81] |
GO/Apt complex | glycated human serum albumin | [Fe(CN)6]3−/4− redox marker (in solution) | SWV | 0.01–50.0 μg/mL 8.7 ng/mL | [82] |
Ag/TiO2 NPs/3DNGH | thrombin | Analyte (label-free aptasensor) | EIS | 0.1–10.0 pM 3.0 fM | [85] |
PANI/APS/CNTs | vascular endothelial growth factor | [Fe(CN)6]3−/4− redox marker (in solution) | DPV | 0.7 ng/mL and 0.4 ng/mL | [86] |
AuNPs/GQDs-WS2 | malachite green | Redox active analyte | DPV | 0.01–10.0 μM 3.38 nM | [87] |
GO/Apt complex | circulating tumor cells | Analyte (label-free aptasensor) | potentiometry | 5–5000 cells | [88] |
Gr/FMNS nanocomposite | Vibrio pathogen | Graphene and riboflavin 5′-monophosphate sodium salt (FMNS) | DPV | – 7.4 × 10−17 M | [92] |
Au/PPy-rGO composite | microRNA-16 | Methylene blue redox marker (in solution) | DPV | 10.0 fM–5 nM 1.57 fM | [93] |
Au/Fe3O4 NPs/CNTs | influenza and norovirus | Analyte (label-free aptasensor) | LSV | 1.0 pM–10 nM influenza: 8.4 pM norovirus: 8.8 pM | [94] |
NH2fMWCNTs | gemcitabine | [Fe(CN)6]3−/4− redox marker (in solution) | DPV/EIS | – | [96] |
COOH-terminated MWCNTs | Escherichia coli | Redox active analyte | DPV | – 17.0 nM | [98] |
GQDs | hepatitis B virus | [Fe(CN)6]3−/4− redox marker (in solution) | DPV | 10.0–500.0 nM 1.0 nM | [99] |
CNDs/Au/Thi | breast cancer gene (BRCA1) | Thionine redox marker (in solution) | CV | 55.0 pg/μL–10.0 ng/μL 55.0 pg/μL | [100] |
CNDs/Au | Helicobacter pylori pathogen | Safranine redox marker (in solution) | DPV | 0.001–20.0 μM 0.16 nM | [101] |
Pd/Au/CDs nanocomposite | colitoxin | Methylene blue redox marker (in solution) | DPV/EIS | 5.0 × 10−16–1.0 × 10−10 M 1.82 × 10−17 M | [102] |
Nanomaterial | Analyte | Signal Source | Detection | Linear Range/LOD | Ref. |
---|---|---|---|---|---|
graphene | Mycobacterium tuberculosis | Hoechst 33,258 (H33258) redox marker (in solution) | CV | – 1 pg total DNA (40 genome equivalents) | [106] |
graphene | Vibrio parahaemolyticus | Hoechst 33,258 (H33258) redox marker (in solution) | CV | 0.3 CFU per 25 g of raw seafood | [107] |
CNT aerogel | specific DNA sequence | [Fe(CN)6]3−/4− redox marker (in solution) | EIS | – 1 pM | [108] |
vertically aligned MWCNT paste/flexible PET substrate | colorectal cancer CEACAM5 | Methylene blue redox marker (in solution) | CV/EIS | 50.0–250.0 μM 0.92 μM | [110] |
SWCNTs/nitrogen CNTs | avian influenza virus H5N1 | Analyte (label-free chemiresistor) | Conductivity | 20.0–200.0 pM | [113] |
Y2O3/AuNPs/SWCNTs film | exosomal miRNA21 | Analyte (label-free FET sensor) | FET | 1.0 aM–1.0 nM 0.87 aM | [115] |
suspended carbon nanotube (SCNT) | specific DNA sequence | Analyte (label-free FET sensor) | FET | 10.0 aM–1.0 pM 10.0 aM | [116] |
carbon nanotube thin film | circulating tumor DNA (ctDNA) | Analyte (label-free FET sensor) | FET | 1.0 pM–1.0 μM 2.0 fM | [117] |
single-crystal graphene | 6 different DNA sequences | Analyte (label-free FET sensor) | FET | – 10 pM | [118] |
graphene–nafion composite | cytokine | Analyte (label-free FET sensor) | FET | 0.015–250 nM 740.0 fM | [120] |
Nanomaterial Label | Analyte | Signal Source | Detection | Linear Range/LOD | Ref. |
---|---|---|---|---|---|
rGO/AuNPs | ochratoxin A | [Fe(CN)6]3−/4− redox marker (in solution) | DPV | 1.0 × 10−5 to 1 ng/mL 5.0 × 10−6 ng/mL | [76] |
S-MWCNTs and A-MWCNTs/Thi | microRNA | Thionin (attached to CNT labels) | DPV | 0.1–12,000.0 pM 0.032 pM | [129] |
“urchinlike” CNT/AuNPs | DNA sequence | [Fe(CN)6]3−/4− redox marker (in solution) | EIS | n.a. 5.2 fM | [130] |
SWCNT-ferrocene conjugate | A549 exosomes | Ferrocene (attached to CNT labels) | SWV | 4.66 × 106–9.32 × 109 9.38 × 104 exosomes/mL | [131] |
GO/Au nanorods/streptavidin | Prostate-specific antigen | Glucose oxidase (catalyst attached to CNT labels) + glucose/luminol | DPV | 0.5 pg/mL–5.0 ng/mL 0.17 pg/mL | [132] |
MWCNTS/PDA Au/Pt-NPs | circulating tumor DNA | Au/Pt NPs (catalyst attached to CNT labels) + H2O2 | amperometry | 1.0 × 10−15–1.0 × 10−8 mol/L 5.0 × 10−16 mol/L | [133] |
graphitic carbon nitride | ochratoxin A | Graphitic carbon nitride (catalyst) + H2O2 | CV | n.a. 0.073 nM | [138] |
cuprous oxide-modified reduced graphene oxide nanocomposite | glycated human serum albumin | Cu2O/rGO (catalyst) + glucose + O2 | DPV | 0.02–1500.0 μg/mL 0.007 μg/mL | [141] |
MWCNTs | DNA-specific sequence | Methylene blue redox marker (in solution) | DPV | – 141.2 pM | [142] |
nitrogen-doped graphene/GQDs/AuNPs composite | carcinoembryonic antigen | Hemin/G-quadruplex (catalyst) + H2O2 | DPV | 1.0 × 10−5–200.0 ng/mL 3.2 × 10−6 ng/mL | [144] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymczyk, A.; Ziółkowski, R.; Malinowska, E. Modern Electrochemical Biosensing Based on Nucleic Acids and Carbon Nanomaterials. Sensors 2023, 23, 3230. https://doi.org/10.3390/s23063230
Szymczyk A, Ziółkowski R, Malinowska E. Modern Electrochemical Biosensing Based on Nucleic Acids and Carbon Nanomaterials. Sensors. 2023; 23(6):3230. https://doi.org/10.3390/s23063230
Chicago/Turabian StyleSzymczyk, Anna, Robert Ziółkowski, and Elżbieta Malinowska. 2023. "Modern Electrochemical Biosensing Based on Nucleic Acids and Carbon Nanomaterials" Sensors 23, no. 6: 3230. https://doi.org/10.3390/s23063230
APA StyleSzymczyk, A., Ziółkowski, R., & Malinowska, E. (2023). Modern Electrochemical Biosensing Based on Nucleic Acids and Carbon Nanomaterials. Sensors, 23(6), 3230. https://doi.org/10.3390/s23063230