Figure 1.
The 3D objects used in the off-axis digital holographic recording geometry: (a) circle–triangle; (b) square–rectangle; (c) square–pentagon; (d) pentagon–square. Circle: 2 mm in diameter; triangle: 2 mm in x and y directions; square: 2 mm in x and y directions; pentagon: 2 mm in x and y directions; rectangle: 2 mm in x direction and 1 mm in y direction. The distance between the first plane and second plane was 8 mm in the z direction.
Figure 1.
The 3D objects used in the off-axis digital holographic recording geometry: (a) circle–triangle; (b) square–rectangle; (c) square–pentagon; (d) pentagon–square. Circle: 2 mm in diameter; triangle: 2 mm in x and y directions; square: 2 mm in x and y directions; pentagon: 2 mm in x and y directions; rectangle: 2 mm in x direction and 1 mm in y direction. The distance between the first plane and second plane was 8 mm in the z direction.
Figure 2.
Off-axis digital holographic recording geometry used for the recording of holograms of 3D objects. SF: spatial filter assembly; CL: collimation lens; BS: beam splitter; M: mirror; CMOS: camera sensor.
Figure 2.
Off-axis digital holographic recording geometry used for the recording of holograms of 3D objects. SF: spatial filter assembly; CL: collimation lens; BS: beam splitter; M: mirror; CMOS: camera sensor.
Figure 3.
Block diagram of CNN for multi-class classification and multi-output regression.
Figure 3.
Block diagram of CNN for multi-class classification and multi-output regression.
Figure 4.
Representative images of the digital holograms of 3D objects recorded at distance of mm: (a) circle–triangle (); (b) square–rectangle (); (c) triangle–rectangle (); (d) triangle–pentagon (); (e) pentagon–triangle ().
Figure 4.
Representative images of the digital holograms of 3D objects recorded at distance of mm: (a) circle–triangle (); (b) square–rectangle (); (c) triangle–rectangle (); (d) triangle–pentagon (); (e) pentagon–triangle ().
Figure 5.
(a) Concatenated intensity–phase image of the circle–pentagon ( object that belonged to Class-a; (b) concatenated intensity–phase image of the square–rectangle () object that belonged to Class-b.
Figure 5.
(a) Concatenated intensity–phase image of the circle–pentagon ( object that belonged to Class-a; (b) concatenated intensity–phase image of the square–rectangle () object that belonged to Class-b.
Figure 6.
Reconstructed phase images at a distance of : (a) square–triangle (); (b) square–pentagon ().
Figure 6.
Reconstructed phase images at a distance of : (a) square–triangle (); (b) square–pentagon ().
Figure 7.
Error/accuracy plot for training/validation sets for the hologram dataset.
Figure 7.
Error/accuracy plot for training/validation sets for the hologram dataset.
Figure 8.
Multi-class confusion matrix for the hologram dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 8.
Multi-class confusion matrix for the hologram dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 9.
ROCs for the hologram dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 9.
ROCs for the hologram dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 10.
Precision-recall characteristics for the hologram dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 10.
Precision-recall characteristics for the hologram dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 11.
Loss and accuracy plot for the concatenated intensity–phase (IP) image dataset.
Figure 11.
Loss and accuracy plot for the concatenated intensity–phase (IP) image dataset.
Figure 12.
Multi-class confusion matrix for the whole information dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 12.
Multi-class confusion matrix for the whole information dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 13.
ROCs for whole information dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 13.
ROCs for whole information dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 14.
Precision-recall characteristic for the whole information dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 14.
Precision-recall characteristic for the whole information dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 15.
Error and accuracy measurements on training/validation sets for phase-only image dataset.
Figure 15.
Error and accuracy measurements on training/validation sets for phase-only image dataset.
Figure 16.
Five-class error matrix for the phase-only image dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 16.
Five-class error matrix for the phase-only image dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 17.
ROCs for the phase-only image dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 17.
ROCs for the phase-only image dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 18.
Precision-recall characteristics for the phase-only image dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 18.
Precision-recall characteristics for the phase-only image dataset: (a) CNN; (b) KNN; (c) MLP; (d) DT; (e) RF; (f) ET.
Figure 19.
Loss/MSE/MAE plot for hologram dataset.
Figure 19.
Loss/MSE/MAE plot for hologram dataset.
Figure 20.
Loss/MSE/MAE plot on training/validation sets for whole information dataset.
Figure 20.
Loss/MSE/MAE plot on training/validation sets for whole information dataset.
Figure 21.
Loss/MSE/MAE plot for training/validation sets of the phase-only image dataset.
Figure 21.
Loss/MSE/MAE plot for training/validation sets of the phase-only image dataset.
Table 1.
Model Summary of CNN.
Table 1.
Model Summary of CNN.
Layer | Input | Output | Number of Parameters |
---|
Conv1 | 160 × 160 × 8 | 158 × 158 × 8 | 224 |
MaxPooling2D | 158 × 158 × 8 | 79 × 79 × 8 | 0 |
Conv2 | 79 × 79 × 16 | 77 × 77 × 16 | 1168 |
MaxPooling2D | 77 × 77 × 16 | 38 × 38 × 16 | 0 |
Conv3 | 38 × 38 × 32 | 36 × 36 × 32 | 4640 |
MaxPooling2D | 36 × 36 × 32 | 18 × 18 × 32 | 0 |
Conv4 | 18 × 18 × 64 | 16 × 16 × 64 | 18,496 |
MaxPooling2D | 16 × 16 × 64 | 8 × 8 × 64 | 0 |
Fully connected | 4096 | 16 | 65,552 |
Output | 16 | 5 | 85 |
Total number of parameters | | | 90,165 |
Table 2.
Evaluation metrics for the CNN, KNN, MLP, DT, RF, and ET classifiers on the hologram dataset.
Table 2.
Evaluation metrics for the CNN, KNN, MLP, DT, RF, and ET classifiers on the hologram dataset.
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | CNN |
Accuracy | 0.78 | 0.65 | 0.61 | 0.74 | 0.48 | | | | |
Precision | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.13 | 0.07 | 0.11 | 0.13 |
Recall | 0.00 | 0.00 | 0.43 | 0.00 | 0.00 | 0.13 | 0.09 | 0.13 | 0.13 |
F1-Score | 0.00 | 0.00 | 0.40 | 0.00 | 0.00 | 0.13 | 0.08 | 0.12 | 0.13 |
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | KNN |
Accuracy | 0.87 | 0.91 | 0.57 | 0.57 | 0.83 | | | | |
Precision | 0.00 | 0.00 | 0.00 | 0.22 | 0.00 | 0.20 | 0.04 | 0.05 | 0.09 |
Recall | 0.00 | 0.00 | 0.00 | 0.40 | 0.00 | 0.09 | 0.08 | 0.09 | 0.09 |
F1-Score | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.12 | 0.06 | 0.06 | 0.09 |
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | MLP |
Accuracy | 0.13 | 0.91 | 0.43 | 0.22 | 0.13 | | | | |
Precision | 0.13 | 0.00 | 0.43 | 0.22 | 0.13 | 0.23 | 0.18 | 0.27 | 0.23 |
Recall | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.91 | 0.80 | 0.91 | 0.91 |
F1-Score | 0.23 | 0.00 | 0.61 | 0.36 | 0.23 | 0.37 | 0.28 | 0.40 | 0.37 |
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | DT |
Accuracy | 0.65 | 0.87 | 0.48 | 0.39 | 0.87 | | | | |
Precision | 0.00 | 0.00 | 0.00 | 0.20 | 0.00 | 0.13 | 0.04 | 0.04 | 0.13 |
Recall | 0.00 | 0.00 | 0.00 | 0.60 | 0.00 | 0.13 | 0.12 | 0.13 | 0.13 |
F1-Score | 0.00 | 0.00 | 0.00 | 0.30 | 0.00 | 0.13 | 0.06 | 0.07 | 0.13 |
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | RF |
Accuracy | 0.65 | 0.87 | 0.83 | 0.65 | 0.87 | | | | |
Precision | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Recall | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
F1-Score | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | ET |
Accuracy | 0.65 | 0.87 | 0.83 | 0.61 | 0.87 | | | | |
Precision | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Recall | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
F1-Score | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Table 3.
Computational costs and complexities for the CNN, KNN, MLP, DT, RF, and ET classifiers on the hologram dataset.
Table 3.
Computational costs and complexities for the CNN, KNN, MLP, DT, RF, and ET classifiers on the hologram dataset.
Parameter | CNN | KNN | MLP | DT | RF | ET |
---|
Floating-point operations (FLOPs) | 45,223,104 | 384,000 | 76,805 | 76,807 | 1,536,000 | 1,536,000 |
Training time (s) | 6560 | 175 | 190 | 125 | 116 | 119 |
Test time (s) | 163 | 94 | 80 | 67 | 71 | 78 |
Table 4.
Evaluation metrics for the CNN, KNN, MLP, DT, RF, and ET classifiers on the whole information dataset.
Table 4.
Evaluation metrics for the CNN, KNN, MLP, DT, RF, and ET classifiers on the whole information dataset.
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | CNN |
Accuracy | 0.91 | 0.61 | 0.74 | 0.74 | 0.61 | | | | |
Precision | 0.00 | 0.50 | 0.38 | 0.00 | 0.27 | 0.30 | 0.23 | 0.31 | 0.30 |
Recall | 0.00 | 0.11 | 0.75 | 0.00 | 0.75 | 0.30 | 0.32 | 0.30 | 0.30 |
F1-Score | 0.00 | 0.18 | 0.50 | 0.00 | 0.40 | 0.30 | 0.22 | 0.23 | 0.30 |
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | KNN |
Accuracy | 0.74 | 0.83 | 0.91 | 0.61 | 0.83 | | | | |
Precision | 0.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.38 | 0.12 | 0.18 | 0.13 |
Recall | 0.43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.13 | 0.09 | 0.13 | 0.13 |
F1-Score | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 | 0.10 | 0.15 | 0.13 |
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | MLP |
Accuracy | 0.30 | 0.83 | 0.09 | 0.26 | 0.17 | | | | |
Precision | 0.30 | 0.00 | 0.09 | 0.26 | 0.17 | 0.21 | 0.17 | 0.20 | 0.21 |
Recall | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.83 | 0.80 | 0.83 | 0.83 |
F1-Score | 0.47 | 0.00 | 0.16 | 0.41 | 0.30 | 0.33 | 0.27 | 0.32 | 0.33 |
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | DT |
Accuracy | 0.91 | 0.78 | 0.74 | 0.57 | 0.83 | | | | |
Precision | 0.00 | 0.60 | 0.00 | 0.27 | 0.00 | 0.38 | 0.17 | 0.22 | 0.26 |
Recall | 0.00 | 0.50 | 0.00 | 0.60 | 0.00 | 0.26 | 0.22 | 0.26 | 0.26 |
F1-Score | 0.00 | 0.55 | 0.00 | 0.37 | 0.00 | 0.31 | 0.18 | 0.22 | 0.26 |
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | RF |
Accuracy | 0.91 | 0.74 | 0.70 | 0.78 | 0.87 | | | | |
Precision | 0.00 | 0.00 | 0.33 | 0.00 | 1.00 | 0.50 | 0.27 | 0.26 | 0.09 |
Recall | 0.00 | 0.00 | 0.17 | 0.00 | 0.25 | 0.09 | 0.08 | 0.09 | 0.09 |
F1-Score | 0.00 | 0.00 | 0.22 | 0.00 | 0.40 | 0.15 | 0.12 | 0.13 | 0.09 |
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | ET |
Accuracy | 0.91 | 0.74 | 0.78 | 0.70 | 0.83 | | | | |
Precision | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.33 | 0.20 | 0.26 | 0.04 |
Recall | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 0.04 | 0.03 | 0.04 | 0.04 |
F1-Score | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.08 | 0.06 | 0.07 | 0.04 |
Table 5.
Computational costs and complexities for the CNN, KNN, MLP, DT, RF, and ET classifiers on the whole information dataset.
Table 5.
Computational costs and complexities for the CNN, KNN, MLP, DT, RF, and ET classifiers on the whole information dataset.
Parameter | CNN | KNN | MLP | DT | RF | ET |
---|
Floating-point perations (FLOPs) | 4,522,3104 | 384,000 | 76,805 | 76,807 | 1,536,000 | 1,536,000 |
Training time(s) | 5012 | 164 | 178 | 134 | 121 | 131 |
Test time(s) | 139 | 89 | 73 | 62 | 64 | 72 |
Table 6.
Evaluation metrics for the CNN, KNN, MLP, DT, RF, and ET classifiers on the phase-only image dataset.
Table 6.
Evaluation metrics for the CNN, KNN, MLP, DT, RF, and ET classifiers on the phase-only image dataset.
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | CNN |
Accuracy | 0.78 | 0.65 | 0.65 | 0.87 | 0.91 | | | | |
Precision | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.43 | 0.20 | 0.24 | 0.43 |
Recall | 0.00 | 0.00 | 1.00 | 0.67 | 0.00 | 0.43 | 0.33 | 0.43 | 0.43 |
F1-Score | 0.00 | 0.00 | 0.67 | 0.57 | 0.00 | 0.43 | 0.25 | 0.31 | 0.43 |
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | KNN |
Accuracy | 0.78 | 0.83 | 0.65 | 0.87 | 0.83 | | | | |
Precision | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Recall | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
F1-Score | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | MLP |
Accuracy | 0.22 | 0.83 | 0.30 | 0.13 | 0.17 | | | | |
Precision | 0.22 | 0.00 | 0.30 | 0.13 | 0.17 | 0.21 | 0.17 | 0.19 | 0.21 |
Recall | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.83 | 0.80 | 0.83 | 0.83 |
F1-Score | 0.36 | 0.00 | 0.47 | 0.23 | 0.30 | 0.33 | 0.27 | 0.30 | 0.33 |
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | DT |
Accuracy | 0.74 | 0.65 | 0.43 | 0.83 | 0.78 | | | | |
Precision | 0.00 | 0.00 | 0.19 | 0.00 | 0.00 | 0.16 | 0.04 | 0.02 | 0.13 |
Recall | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.13 | 0.20 | 0.13 | 0.13 |
F1-Score | 0.00 | 0.00 | 0.32 | 0.00 | 0.00 | 0.14 | 0.06 | 0.04 | 0.13 |
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | RF |
Accuracy | 0.87 | 0.61 | 0.91 | 0.83 | 0.78 | | | | |
Precision | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.50 | 0.20 | 0.13 | 0.04 |
Recall | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.04 | 0.07 | 0.04 | 0.04 |
F1-Score | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.08 | 0.10 | 0.07 | 0.04 |
Class and Metric | Class-a | Class-b | Class-c | Class-d | Class-e | Micro Average | Macro Average | Weighted Average | Samples Average | ET |
Accuracy | 0.87 | 0.65 | 0.87 | 0.83 | 0.78 | | | | |
Precision | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 0.10 | 0.07 | 0.04 |
Recall | 0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.07 | 0.04 | 0.04 |
F1-Score | 0.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.08 | 0.05 | 0.04 |
Table 7.
Computational costs and complexities for the CNN, KNN, MLP, DT, RF, and ET classifiers on the phase-only image dataset.
Table 7.
Computational costs and complexities for the CNN, KNN, MLP, DT, RF, and ET classifiers on the phase-only image dataset.
Parameter | CNN | KNN | MLP | DT | RF | ET |
---|
Floating-point operations (FLOPs) | 45,223,104 | 384,000 | 76,805 | 76,807 | 1,536,000 | 1,536,000 |
Training time(s) | 5635 | 159 | 181 | 141 | 123 | 134 |
Test time(s) | 96 | 79 | 68 | 61 | 58 | 67 |
Table 8.
Evaluation metrics for test set of the hologram dataset.
Table 8.
Evaluation metrics for test set of the hologram dataset.
Metric | CNN | KNN | MLP | DT | RF | ET |
---|
MAE | 0.46 | 0.30 | 0.48 | 0.34 | 0.35 | 0.32 |
R2 score | −1.20 | −0.09 | −1.13 | −0.74 | −0.40 | −0.26 |
EV regression score | −0.83 | −0.01 | 0.00 | -0.64 | −0.27 | −0.13 |
Table 9.
Evaluation metrics for validation set of the hologram dataset.
Table 9.
Evaluation metrics for validation set of the hologram dataset.
Metric | CNN | KNN | MLP | DT | RF | ET |
---|
MAE | 0.46 | 0.34 | 0.42 | 0.31 | 0.31 | 0.32 |
R2 score | −1.35 | −0.65 | −1.10 | −0.44 | −0.14 | −0.27 |
EV regression score | −0.77 | −0.33 | 0.00 | −0.33 | −0.13 | −0.19 |
Table 10.
Evaluation metrics for test set of the whole information dataset.
Table 10.
Evaluation metrics for test set of the whole information dataset.
Metric | CNN | KNN | MLP | DT | RF | ET |
---|
MAE | 0.33 | 0.28 | 0.47 | 0.33 | 0.31 | 0.32 |
R2 score | −0.93 | −0.11 | −1.26 | −1.01 | −0.14 | −0.61 |
EV regression score | −0.30 | −0.02 | 0.00 | −0.79 | −0.02 | −0.42 |
Table 11.
Evaluation metrics for validation set on whole information dataset.
Table 11.
Evaluation metrics for validation set on whole information dataset.
Metric | CNN | KNN | MLP | DT | RF | ET |
---|
MAE | 0.25 | 0.31 | 0.51 | 0.28 | 0.31 | 0.28 |
R2 score | −0.17 | −0.36 | −2.01 | −0.45 | −0.13 | −0.23 |
EV regression score | −0.16 | −0.23 | 0.00 | −0.43 | 0.01 | −0.06 |
Table 12.
Evaluation metrics for test set on phase-only image dataset.
Table 12.
Evaluation metrics for test set on phase-only image dataset.
Metric | CNN | KNN | MLP | DT | RF | ET |
---|
MAE | 0.36 | 0.33 | 0.44 | 0.30 | 0.32 | 0.30 |
R2 score | −0.58 | −0.38 | −0.86 | −0.70 | −0.17 | −0.19 |
EV regression score | −0.20 | −0.10 | 0.00 | −0.62 | −0.10 | −0.13 |
Table 13.
Evaluation metrics for validation set of phase-only image dataset.
Table 13.
Evaluation metrics for validation set of phase-only image dataset.
Metric | CNN | KNN | MLP | DT | RF | ET |
---|
MAE | 0.44 | 0.35 | 0.44 | 0.37 | 0.34 | 0.33 |
R2 score | −0.79 | −0.43 | −0.88 | −1.51 | −0.41 | −0.56 |
EV regression score | −0.62 | −0.23 | 0.00 | −1.21 | −0.15 | −0.30 |