Multi-Delay Identification of Rare Earth Extraction Process Based on Improved Time-Correlation Analysis
Abstract
:1. Introduction
2. Improvement of Time-Correlation Analysis Method
2.1. Grey Relational Analysis
2.2. Time Delay Identification Method Based on Time-Correlation Analysis
3. Adaptive Chaotic Discrete State Transition Algorithm
- (1)
- Swap transformation:
- (2)
- Shift transformation:
- (3)
- Symmetry transformation:
- (4)
- Substitute transformation:
3.1. Initialization Method Based on Opposition-Based Learning Strategy
3.2. Chaos Perturbation Strategy
3.3. Adaptive Recovery Strategy
3.4. Validation of ACDSTA
4. Application of ACDSTA in Rare Earth Extraction Process
4.1. Rare Earth Extraction Process Analysis
4.2. Time Delay Identification of Rare Earth Extraction Process
4.3. Time Delay Identification Results and Method Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, W.; Chai, T. Bilinear model of rare earth cascade extraction process and its parameter identification. Control Theory Appl. 2006, 23, 717–723. [Google Scholar]
- Chan, Y.Y.; Lee, C.; Lee, G.G.; Jo, S.; Su, W.S. Modeling and simulation of multicomponent solvent extraction processes to purify rare earth metals. Hydrometallurgy 2016, 159, 40–45. [Google Scholar]
- Yang, H.; Dai, W.; Lu, R.; Zhu, J. Simulation of rare earth extraction process based on separation coefficient correction. CIESC J. 2020, 71, 3180–3190. [Google Scholar]
- Wang, Q.; Zhang, Y. Robust identification of continuous systems with dead-time from step responses. Automatica 2001, 37, 377–390. [Google Scholar] [CrossRef]
- Salim, A. Step response-based identification of fractional order time delay models. Circuits Syst. Signal Process. 2020, 39, 1–17. [Google Scholar]
- Rad, A.B.; Lo, W.L.; Tsang, K.M. Simultaneous online identification of rational dynamics and time delay: A correlation-based approach. IEEE Trans. Control Syst. Technol. 2003, 11, 957–959. [Google Scholar] [CrossRef]
- Li, J.; Zheng, Y.; Lin, Z. Recursive identification of time-varying systems: Self-tuning and matrix RLS algorithms. Syst. Control Lett. 2014, 66, 104–110. [Google Scholar] [CrossRef]
- Wang, X.; Ding, F. Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle. Signal Process. 2015, 117, 208–218. [Google Scholar] [CrossRef]
- You, K. Recursive algorithms for parameter estimation with adaptive quantizer. Automatica 2015, 52, 192–201. [Google Scholar] [CrossRef]
- Lu, Y.; Du, J.; Li, C. Neural networks compensate control for unknown systems with time delay. J. Tsinghua Univ. (Sci. Technol.) 1998, 38, 67–69. [Google Scholar]
- Saki, S.; Fatehi, A. Neural network identification in nonlinear model predictive control for frequent and infrequent operating points using nonlinearity measure. ISA Trans. 2020, 97, 216–229. [Google Scholar] [CrossRef]
- Zhao, X.; Shen, S.; Su, L.; Yin, X. Elman neural network–based identification of rate-dependent hysteresis in piezoelectric actuators. J. Intell. Mater. Syst. Struct. 2020, 31, 980–989. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, T. A CS recovery algorithm for model and time delay identification of MISO-FIR systems. Algorithms 2015, 8, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Ma, J.; Liu, Y.; Ding, F. Identification methods for time-delay systems based on the redundant rules. Signal Process. 2017, 137, 192–198. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Ding, L.; Wang, Z.; Liang, S. Parameter identification of fractional-order time delay system based on Legendre wavelet. ISA Trans. 2022, 163, 108141. [Google Scholar] [CrossRef]
- Hofmann, J.; Ponomarev, A.; Hagenmeyer, V.; Gröll, L. Time-delay identification and validation of a liquid film transport model based on pilot plant experiments. IFAC-PapersOnLine 2021, 54, 401–408. [Google Scholar] [CrossRef]
- Prasad, V.; Mehta, U. Modeling and parametric identification of Hammerstein systems with time delay and asymmetric dead-zones using fractional differential equations. Mech. Syst. Signal Process. 2022, 167, 108568. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Ren, X. Robust adaptive identification for sandwich systems with unknown time-delay. ISA Trans. 2020, 100, 289–298. [Google Scholar] [CrossRef]
- Liu, G.; Yu, M.; Wang, L.; Yin, Z.; Liu, J.; Lu, Z. Rapid parameter identification of linear time-delay system from noisy frequency domain data. Appl. Math. Model. 2020, 83, 736–753. [Google Scholar] [CrossRef]
- Li, Z.; Wang, P.; Zhang, J.; Guan, H. A model-free method for identifying time-delay characteristics of HVAC system based on multivariate transfer entropy. Build. Environ. 2022, 217, 109072. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, Y.; Deng, F.; Zhan, X.; Hayat, T. Parameter estimation algorithms of linear systems with time-delays based on the frequency responses and harmonic balances under the multi-frequency sinusoidal signal excitation. Signal Process. 2021, 181, 107904. [Google Scholar] [CrossRef]
- Ishida, A.; Miyazaki, S. Maximum likelihood identification of a posture control system. IEEE Trans. Biomed. Eng. 1987, 34, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Drakunov, S.V.; Perruquetti, W.; Richard, J.P.; Belkoura, L. Delay identification in time-delay systems using variable structure observers. Annu. Rev. Control 2006, 30, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Guan, X. Parameter estimation for time-delay chaotic system by particle swarm optimization. Chaos Solitons Fractals 2017, 40, 1391–1398. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J.; Huang, C.; Yang, C. An improved genetic algorithm for multi-delay times identification. In Proceedings of the 2011 Chinese Control and Decision Conference, Mianyang, China, 23 May 2011; pp. 3290–3293. [Google Scholar]
- Huang, C.; Gui, W.; Xie, Y.; Yang, C. Multi-delays identification for alumina carbonation decomposition process based on improved cross-correlation function. Chin. J. Nonferrous Met. 2011, 21, 1186–1191. [Google Scholar]
- Wang, Y.; Xia, H.; Yuan, X.; Gui, W. Multi-delay identification by trend-similarity analysis and its application to hydrocracking process. CIESC J. 2018, 69, 1149–1157. [Google Scholar]
- Wang, F.; Wang, X.; Xie, Y.; Xie, S.; Yang, C. Multi-delays identification for alumina evaporation process based on time-correlation analysis. CIESC J. 2017, 68, 992–997. [Google Scholar]
- Yang, C.; Tang, X.; Zhou, X.; Gui, W. A discrete state transition algorithm for traveling salesman problem. Control Theory Appl. 2013, 30, 1040–1046. [Google Scholar]
- Zhou, X.; Yang, C.; Gui, W. The principle of state transition algorithm and its applications. Acta Autom. Sin. 2020, 46, 2260–2274. [Google Scholar]
- Zhang, S.; Guo, J.; Luo, N.; Zhang, D.; Wang, W.; Wang, L. A calibration-free method based on grey relational analysis for heterogeneous smartphones in fingerprint-based indoor positioning. Sensors 2019, 19, 3885. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, D.Y.; Yang, C.; Gui, W. Discrete state transition algorithm for unconstrained integer optimization problems. Neurocomputing 2016, 173, 864–874. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Chen, L.; Chen, H. Multi-strategy learning boosted colony predation algorithm for photovoltaic model parameter identification. Sensors 2022, 22, 8281. [Google Scholar] [CrossRef]
- Zheng, F.; Liu, G. An adaptive sinusoidal-disturbance-strategy sparrow search algorithm and its application. Sensors 2022, 22, 8787. [Google Scholar] [CrossRef]
- Zhou, Y.; Bao, L.; Chen, C.P. A new 1D chaotic system for image encryption. Signal Process. 2014, 97, 172–182. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, H.; Wang, C. State transition algorithm with strategy adaptation. Control Decis. 2022, 37, 574–582. [Google Scholar]
- Wu, Z.Y.; Li, G.Q.; Quan, J. Global optimality conditions and optimization methods for quadratic integer programming problems. J. Glob. Optim. 2011, 51, 549–568. [Google Scholar]
- Lu, R.; Lai, L.; Yang, H.; Zhu, J. Prediction of CePr/Nd component content based on virtual sample generation. Transducer Microsyst. Technol. 2022, 41, 152–156. [Google Scholar]
Algorithm | Index | EXP1 | EXP2 | EXP3 |
---|---|---|---|---|
average error | 0 | 7.6% | 18.7% | |
PSO | average value | −620 | −64,907 | −1,170,653 |
S/20 | 20/20 | 11/20 | 2/20 | |
average error | 82.9% | 62.6% | 58.1% | |
DSTA | average value | −106 | −26,264 | −603,975 |
S/20 | 0/20 | 0/20 | 0/20 | |
average error | 0 | 1.6% | 8.4% | |
DSTAI | average value | −620 | −69,148 | −1,319,270 |
S/20 | 20/20 | 18/20 | 7/20 | |
average error | 0 | 0 | 2.2% | |
ACDSTA | average value | −620 | −70,429 | −1,408,107 |
S/20 | 20/20 | 20/20 | 15/20 |
Color Feature | R | G | B | H | S | I |
---|---|---|---|---|---|---|
correlation degree | 0.6179 | 0.5832 | 0.6734 | 0.543 | 0.5706 | 0.6123 |
Method | MAXRE% | MEANRE% | MAE |
---|---|---|---|
Unused | 7.96 | 1.63 | 0.9183 |
Original | 5.08 | 1.33 | 0.8738 |
Improved | 1.69 | 0.48 | 0.362 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, R.; Liu, H.; Yang, H.; Zhu, J.; Dai, W. Multi-Delay Identification of Rare Earth Extraction Process Based on Improved Time-Correlation Analysis. Sensors 2023, 23, 1102. https://doi.org/10.3390/s23031102
Lu R, Liu H, Yang H, Zhu J, Dai W. Multi-Delay Identification of Rare Earth Extraction Process Based on Improved Time-Correlation Analysis. Sensors. 2023; 23(3):1102. https://doi.org/10.3390/s23031102
Chicago/Turabian StyleLu, Rongxiu, Hongliang Liu, Hui Yang, Jianyong Zhu, and Wenhao Dai. 2023. "Multi-Delay Identification of Rare Earth Extraction Process Based on Improved Time-Correlation Analysis" Sensors 23, no. 3: 1102. https://doi.org/10.3390/s23031102
APA StyleLu, R., Liu, H., Yang, H., Zhu, J., & Dai, W. (2023). Multi-Delay Identification of Rare Earth Extraction Process Based on Improved Time-Correlation Analysis. Sensors, 23(3), 1102. https://doi.org/10.3390/s23031102