Image Vignetting Correction Using a Deformable Radial Polynomial Model
Abstract
:1. Introduction
- Mechanical vignetting—the effect of this type of vignetting is the blockade of light rays on their way from a scene through a lens to a camera sensor; the result of this is a complete loss of information in certain areas of the image and a lack of data needed for computational vignetting correction methods.
- Optical vignetting—is related to the optical characteristic of the used lens, its characteristic can be change by change of the lens aperture size [27].
- Natural vignetting—refers to the loss of image brightness caused by a change of the viewing angle for individual image pixels, it is modeled by the law [28].
- Pixel vignetting—is related to the geometrical size and optical design (in the case of the use of microlenses) of the image sensor of the camera [29].
- A single image [31,32,33,34] or a sequence of images [18,19,25,26] of a natural scene or scenes to estimate the vignetting—in the case of these methods, the vignetting estimation is obtained as a result minimization of an objective function with the assumption that vignetting is a radial function, which limits the number of lens-camera systems for which these methods can be used. The effectiveness of these methods also depends strongly on many other factors, such as the precision of localization of corresponding pixels, uniformity of the analyzing scene, which limits their applicability. However, and this is a significant advantage, these methods can be used for already acquired images when the acquisition of new reference images is not possible; such situations are common in the case of, e.g., historical images.
2. The Deformable Radial Polynomial Model of Vignetting
3. Experimental Comparison of Vignetting Models
3.1. Assumptions of the Comparison and Methods of Evaluation
3.2. Laboratory Setup and Data Acquisition Process
3.3. Compared Vignetting Models and Their Implementations
3.4. Results of the Experiment
4. Discussion of the Results
4.1. Evaluation of the Models in Terms of the Accuracy of the Obtained Vignetting Estimates
4.2. Computation Time
5. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DRP | Deformable Radial Polynomial vignetting mode |
IQR | Inter Quartile Range |
OLS | Ordinary Least Squares method |
P2D | Polynomial 2D vignetting model |
Polynomial Regression of degree s | |
RP | Radial Polynomial vignetting model |
SNILP | Smooth Non-Iterative Local Polynomial vignetting model |
STD | STandard Deviation |
VM | Vignetting Model |
Appendix A. 3D Charts of the , , and Images
References
- Xue, Y.; Shi, H.M. The Vignetting Effect of a LAMOST-Type Schmidt Telescope. Chin. J. Astron. Astrophys. 2008, 8, 580. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Q.Y.; Chen, T. Vignetting correction for a single star-sky observation image. Appl. Opt. 2019, 58, 4337–4344. [Google Scholar] [CrossRef] [PubMed]
- Piccinini, F.; Lucarelli, E.; Gherardi, A.; Bevilacqua, A. Multi-image based method to correct vignetting effect in light microscopy images. J. Microsc. 2012, 248, 6–22. [Google Scholar] [CrossRef]
- Peng, T.; Thorn, K.; Schroeder, T.; Wang, L.; Theis, F.J.; Marr, C.; Navab, N. A BaSiC tool for background and shading correction of optical microscopy images. Nat. Commun. 2017, 8, 14836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccinini, F.; Bevilacqua, A. Colour Vignetting Correction for Microscopy Image Mosaics Used for Quantitative Analyses. BioMed Res. Int. 2018, 2018, 7082154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mignard-Debise, L.; Ihrke, I. A Vignetting Model for Light Field Cameras with an Application to Light Field Microscopy. IEEE Trans. Comput. Imaging 2019, 5, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Caparó Bellido, A.; Rundquist, B.C. Semi-Automatic Fractional Snow Cover Monitoring from Near-Surface Remote Sensing in Grassland. Remote Sens. 2021, 13, 2045. [Google Scholar] [CrossRef]
- Zhang, A.; Hu, S.; Zhang, X.; Zhang, T.; Li, M.; Tao, H.; Hou, Y. A Handheld Grassland Vegetation Monitoring System Based on Multispectral Imaging. Agriculture 2021, 11, 1262. [Google Scholar] [CrossRef]
- Hakala, T.; Suomalainen, J.; Peltoniemi, J.I. Acquisition of Bidirectional Reflectance Factor Dataset Using a Micro Unmanned Aerial Vehicle and a Consumer Camera. Remote Sens. 2010, 2, 819–832. [Google Scholar] [CrossRef] [Green Version]
- Kelcey, J.; Lucieer, A. Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing. Remote Sens. 2012, 4, 1462–1493. [Google Scholar] [CrossRef]
- Cao, S.; Danielson, B.; Clare, S.; Koenig, S.; Campos-Vargas, C.; Sanchez-Azofeifa, A. Radiometric calibration assessments for UAS-borne multispectral cameras: Laboratory and field protocols. ISPRS J. Photogramm. Remote Sens. 2019, 149, 132–145. [Google Scholar] [CrossRef]
- Cao, H.; Gu, X.; Wei, X.; Yu, T.; Zhang, H. Lookup Table Approach for Radiometric Calibration of Miniaturized Multispectral Camera Mounted on an Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 4012. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, C.; Xue, Y.; Akbar, A.; Jia, S.; Zhou, Y.; Zeng, D. Radiometric calibration of a large-array commodity CMOS multispectral camera for UAV-borne remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102968. [Google Scholar] [CrossRef]
- Olsen, D.; Dou, C.; Zhang, X.; Hu, L.; Kim, H.; Hildum, E. Radiometric Calibration for AgCam. Remote Sens. 2010, 2, 464–477. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Long, T.; Jiao, W.; He, G.; Chen, B.; Huang, P. A General Relative Radiometric Correction Method for Vignetting and Chromatic Aberration of Multiple CCDs: Take the Chinese Series of Gaofen Satellite Level-0 Images for Example. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–25. [Google Scholar] [CrossRef]
- Cauwerts, C.; PhD, M.B.; Deneyer, A. Comparison of the Vignetting Effects of Two Identical Fisheye Lenses. LEUKOS 2012, 8, 181–203. [Google Scholar] [CrossRef]
- Wagdy, A.; Garcia-Hansen, V.; Isoardi, G.; Pham, K. A Parametric Method for Remapping and Calibrating Fisheye Images for Glare Analysis. Buildings 2019, 9, 219. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Pollefeys, M. Robust radiometric calibration and vignetting correction. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 562–576. [Google Scholar] [CrossRef]
- Doutre, C.; Nasiopoulos, P. Fast vignetting correction and color matching for panoramic image stitching. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 709–712. [Google Scholar] [CrossRef]
- Alomran, M.; Chai, D. Feature-based panoramic image stitching. In Proceedings of the 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Phuket, Thailand, 13–15 November 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, C.; Pan, J.; Wang, M.; Zhu, Y. Side-Slither Data-Based Vignetting Correction of High-Resolution Spaceborne Camera with Optical Focal Plane Assembly. Sensors 2018, 18, 3402. [Google Scholar] [CrossRef] [Green Version]
- Kinzig, C.; Cortés, I.; Fernández, C.; Lauer, M. Real-time Seamless Image Stitching in Autonomous Driving. In Proceedings of the 2022 25th International Conference on Information Fusion (FUSION), Linköping, Sweden, 4–7 July 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Saad, K.; Schneider, S.A. Camera Vignetting Model and its Effects on Deep Neural Networks for Object Detection. In Proceedings of the 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE), Graz, Austria, 4–8 November 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Tian, B.; Juefei-Xu, F.; Guo, Q.; Xie, X.; Li, X.; Liu, Y. AVA: Adversarial Vignetting Attack against Visual Recognition. arXiv 2021. [Google Scholar] [CrossRef]
- Goldman, D.B.; Chen, J.H. Vignette and exposure calibration and compensation. In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), Beijing, China, 17–21 October 2005; Volunme I, pp. 899–906. [Google Scholar] [CrossRef]
- Goldman, D.B. Vignette and exposure calibration and compensation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2276–2288. [Google Scholar] [CrossRef]
- Aggarwal, M.; Hua, H.; Ahuja, N. On cosine-fourth and vignetting effects in real lenses. In Proceedings of the Eighth IEEE International Conference on Computer Vision (ICCV 2001), Vancouver, BC, Canada, 7–14 July 2001; Volume 1, pp. 472–479. [Google Scholar] [CrossRef]
- Asada, N.; Amano, A.; Baba, M. Photometric calibration of zoom lens systems. In Proceedings of the 13th International Conference on Pattern Recognition, Vienna, Austria, 25–29 August 1996; Volume 1, pp. 186–190. [Google Scholar]
- Catrysse, P.B.; Liu, X.; Gamal, A.E. QE reduction due to pixel vignetting in CMOS image sensors. In Proceedings of the Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications; Sampat, N., Yeh, T., Blouke, M.M., Sampat, N., Williams, G.M., Jr., Yeh, T., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2000; Volume 3965, pp. 420–430. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.B.; Weiss, R. Can We Calibrate a Camera Using an Image of a Flat, Textureless Lambertian Surface? In Proceedings of the Computer Vision—ECCV 2000, 6th European Conference on Computer Vision, Dublin, Ireland, 26 June–1 July 2000; Vernon, D., Ed.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2000; pp. 640–653. [Google Scholar]
- Zheng, Y.; Lin, S.; Kambhamettu, C.; Yu, J.; Kang, S.B. Single-image vignetting correction. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 2243–2256. [Google Scholar] [CrossRef] [PubMed]
- Rohlfing, T. Single-Image Vignetting Correction by Constrained Minimization of Log-Intensity Entropy; Figshare: London, UK, 2012. [Google Scholar]
- Zheng, Y.; Lin, S.; Kang, S.B.; Xiao, R.; Gee, J.C.; Kambhamettu, C. Single-image vignetting correction from gradient distribution symmetries. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1480–1494. [Google Scholar] [CrossRef]
- Cho, H.; Lee, H.; Lee, S. Radial bright channel prior for single image vignetting correction. Lect. Notes Comput. Sci. 2014, 8690, 189–202. [Google Scholar] [CrossRef]
- Sawchuk, A.A. Real-Time Correction of Intensity Nonlinearities in Imaging Systems. IEEE Trans. Comput. 1977, C-26, 34–39. [Google Scholar] [CrossRef]
- Brady, M.; Legge, G.E. Camera calibration for natural image studies and vision research. J. Opt. Soc. Am. A 2009, 26, 30. [Google Scholar] [CrossRef] [Green Version]
- Bal, A.; Palus, H. A Smooth Non-Iterative Local Polynomial (SNILP) Model of Image Vignetting. Sensors 2021, 21, 7086. [Google Scholar] [CrossRef]
- Burt, P.J.; Adelson, E.H. A multiresolution spline with application to image mosaics. ACM Trans. Graph. (TOG) 1983, 2, 217–236. [Google Scholar] [CrossRef]
- Yu, W. Practical anti-vignetting methods for digital cameras. IEEE Trans. Consum. Electron. 2004, 50, 975–983. [Google Scholar] [CrossRef]
- Leong, F.J.; Brady, M.; McGee, J.O. Correction of uneven illumination (vignetting) in digital microscopy images. J. Clin. Pathol. 2003, 56, 619–621. [Google Scholar] [CrossRef]
Parameters | Webcam | |||
---|---|---|---|---|
Cam-A | Cam-B | Cam-C | Cam-D & Cam-E | |
Microsoft LifeCam Studio | Logitech C920 | Hama C-600 Pro | Xiaomi IMILAB CMSXJ22A | |
Diagonal angle of view | 75° | 78° | 90° | 85° |
Maximum video resolution | ||||
Maximal frame rate @ 1080p | 30 fps | 30 fps | 30 fps | 30 fps |
Focus type | auto focus | auto focus | auto focus | fixed focus |
Focus range | >10 cm | — | — | >60 cm |
Model | Type of Parameters | Number of Parameters |
---|---|---|
RP | parameters of 1D radial polynomial function + coordinates of image optical center | |
DRP | parameters of 1D radial polynomial function + coordinates of image optical center + coefficient of non-radiality of the vignetting | |
P2D | parameters of 2D approximation polynomial | |
SNILP | parameters of 1D approximation of each line along the longer side of the input image with the resolution | , where |
Camera | Model | Degree of Approximation Polynomials s | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
Cam-A | 0.3028 | RP-1 | 0.0553 | 0.0551 | 0.0550 | 0.0548 | 0.0548 | 0.0547 | 0.0545 | 0.0545 | 0.0545 |
RP-2 | 0.0553 | 0.0550 | 0.0549 | 0.0547 | 0.0547 | 0.0546 | 0.0545 | 0.0545 | 0.0544 | ||
DRP-1 | 0.0541 | 0.0538 | 0.0536 | 0.0533 | 0.0533 | 0.0533 | 0.0531 | 0.0531 | 0.0531 | ||
DRP-2 | 0.0541 | 0.0537 | 0.0536 | 0.0533 | 0.0533 | 0.0532 | 0.0531 | 0.0531 | 0.0530 | ||
P2D | 0.0606 | 0.0585 | 0.0440 | 0.0429 | 0.0402 | 0.0398 | 0.0371 | 0.0368 | 0.0346 | ||
SNILP | 0.0540 | 0.0520 | 0.0410 | 0.0408 | 0.0377 | 0.0375 | 0.0349 | 0.0346 | 0.0337 | ||
Cam-B | 3.7551 | RP-1 | 0.5750 | 0.5749 | 0.5743 | 0.5634 | 0.5436 | 0.5379 | 0.5219 | 0.5189 | 0.5165 |
RP-2 | 0.5630 | 0.5629 | 0.5628 | 0.5520 | 0.5331 | 0.5259 | 0.5068 | 0.5048 | 0.5010 | ||
DRP-1 | 0.4549 | 0.4549 | 0.4543 | 0.4412 | 0.4170 | 0.4032 | 0.3681 | 0.3674 | 0.3552 | ||
DRP-2 | 0.4549 | 0.4549 | 0.4542 | 0.4411 | 0.4167 | 0.4026 | 0.3676 | 0.3670 | 0.3547 | ||
P2D | 0.4533 | 0.4474 | 0.4201 | 0.4101 | 0.4005 | 0.3854 | 0.3732 | 0.3640 | 0.3523 | ||
SNILP | 0.4314 | 0.4219 | 0.4143 | 0.3970 | 0.3729 | 0.3553 | 0.3340 | 0.3128 | 0.2962 | ||
Cam-C | 7.0446 | RP-1 | 2.1372 | 2.0961 | 1.8347 | 1.7934 | 1.7297 | 1.7213 | 1.6779 | 1.6869 | 1.6742 |
RP-2 | 2.1317 | 2.0870 | 1.8248 | 1.7840 | 1.7242 | 1.7185 | 1.6778 | 1.6866 | 1.6740 | ||
DRP-1 | 1.4453 | 1.4042 | 1.2594 | 1.2135 | 1.1431 | 1.1207 | 1.0955 | 1.1008 | 1.0894 | ||
DRP-2 | 1.4452 | 1.4016 | 1.2568 | 1.2120 | 1.1424 | 1.1190 | 1.0922 | 1.0974 | 1.0852 | ||
P2D | 1.4144 | 1.2838 | 1.2487 | 1.1791 | 0.9663 | 0.8157 | 0.7063 | 0.6197 | 0.5633 | ||
SNILP | 1.3209 | 1.1917 | 1.0207 | 0.9061 | 0.6955 | 0.6216 | 0.5582 | 0.5163 | 0.4813 | ||
Cam-D | 9.9096 | RP-1 | 0.9398 | 0.8891 | 0.8698 | 0.8339 | 0.8262 | 0.8014 | 0.7970 | 0.7953 | 0.7977 |
RP-2 | 0.9308 | 0.8810 | 0.8641 | 0.8298 | 0.8217 | 0.7969 | 0.7927 | 0.7909 | 0.7933 | ||
DRP-1 | 0.8353 | 0.7987 | 0.7945 | 0.7630 | 0.7554 | 0.7310 | 0.7252 | 0.7221 | 0.7243 | ||
DRP-2 | 0.8267 | 0.7904 | 0.7860 | 0.7507 | 0.7434 | 0.7163 | 0.7105 | 0.7066 | 0.7087 | ||
P2D | 1.3315 | 1.3246 | 0.6429 | 0.6104 | 0.5923 | 0.5849 | 0.4956 | 0.4736 | 0.4396 | ||
SNILP | 1.1475 | 1.1377 | 0.6123 | 0.5962 | 0.5263 | 0.5035 | 0.4284 | 0.4188 | 0.4079 | ||
Cam-E | 20.2225 | RP-1 | 1.4188 | 1.1542 | 1.0754 | 0.8656 | 0.8570 | 0.8337 | 0.8349 | 0.8067 | 0.7646 |
RP-2 | 1.4106 | 1.1428 | 1.0615 | 0.8393 | 0.8295 | 0.8074 | 0.8090 | 0.7811 | 0.7364 | ||
DRP-1 | 1.3656 | 1.1200 | 1.0616 | 0.8582 | 0.8499 | 0.8247 | 0.8255 | 0.7998 | 0.7600 | ||
DRP-2 | 1.3534 | 1.1047 | 1.0451 | 0.8294 | 0.8198 | 0.7956 | 0.7968 | 0.7717 | 0.7297 | ||
P2D | 2.8814 | 2.8686 | 1.0042 | 0.9923 | 0.9913 | 0.9857 | 0.6750 | 0.6726 | 0.6339 | ||
SNILP | 2.1547 | 2.1492 | 0.9763 | 0.9696 | 0.7148 | 0.7104 | 0.6072 | 0.6026 | 0.5926 |
Camera | Model | Degree of Approximation Polynomials s | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
Cam-A | 0.3985 | RP-1 | 0.0711 | 0.0706 | 0.0704 | 0.0708 | 0.0708 | 0.0711 | 0.0710 | 0.0710 | 0.0710 |
RP-2 | 0.0704 | 0.0698 | 0.0694 | 0.0698 | 0.0698 | 0.0702 | 0.0702 | 0.0702 | 0.0702 | ||
DRP-1 | 0.0687 | 0.0681 | 0.0677 | 0.0678 | 0.0678 | 0.0680 | 0.0679 | 0.0679 | 0.0680 | ||
DRP-2 | 0.0690 | 0.0683 | 0.0680 | 0.0681 | 0.0681 | 0.0682 | 0.0682 | 0.0682 | 0.0683 | ||
P2D | 0.0749 | 0.0695 | 0.0572 | 0.0563 | 0.0522 | 0.0517 | 0.0456 | 0.0450 | 0.0431 | ||
SNILP | 0.0700 | 0.0678 | 0.0540 | 0.0536 | 0.0478 | 0.0474 | 0.0436 | 0.0432 | 0.0419 | ||
Cam-B | 5.8670 | RP-1 | 0.6895 | 0.6870 | 0.6887 | 0.7092 | 0.6474 | 0.6646 | 0.6088 | 0.6045 | 0.5947 |
RP-2 | 0.6843 | 0.6814 | 0.6816 | 0.7046 | 0.6503 | 0.6672 | 0.6116 | 0.6075 | 0.5952 | ||
DRP-1 | 0.5949 | 0.5949 | 0.5782 | 0.5891 | 0.5014 | 0.5157 | 0.4328 | 0.4302 | 0.3953 | ||
DRP-2 | 0.5943 | 0.5945 | 0.5777 | 0.5882 | 0.4994 | 0.5138 | 0.4328 | 0.4303 | 0.3961 | ||
P2D | 0.6065 | 0.6030 | 0.5519 | 0.5341 | 0.5194 | 0.4996 | 0.4880 | 0.4803 | 0.4437 | ||
SNILP | 0.5670 | 0.5566 | 0.5524 | 0.5150 | 0.4817 | 0.4632 | 0.4199 | 0.3874 | 0.3571 | ||
Cam-C | 10.1281 | RP-1 | 2.4483 | 2.5710 | 2.2063 | 2.2129 | 2.2446 | 2.1988 | 2.1458 | 2.1781 | 2.1546 |
RP-2 | 2.4640 | 2.6363 | 2.2521 | 2.2438 | 2.2693 | 2.2108 | 2.1490 | 2.1742 | 2.1480 | ||
DRP-1 | 1.0902 | 1.1150 | 1.1001 | 1.1050 | 1.0742 | 1.0628 | 1.0471 | 1.0610 | 1.0488 | ||
DRP-2 | 1.0903 | 1.1275 | 1.1127 | 1.1124 | 1.0709 | 1.0464 | 1.0261 | 1.0361 | 1.0192 | ||
P2D | 1.1020 | 0.9574 | 0.8716 | 0.8949 | 0.7357 | 0.6782 | 0.6468 | 0.6107 | 0.5950 | ||
SNILP | 1.0439 | 0.9015 | 0.7671 | 0.7554 | 0.6204 | 0.5927 | 0.5807 | 0.5536 | 0.5346 | ||
Cam-D | 15.1372 | RP-1 | 1.1225 | 1.1434 | 1.1373 | 0.9859 | 0.9875 | 0.9488 | 0.9515 | 0.9562 | 0.9616 |
RP-2 | 1.0876 | 1.1134 | 1.1192 | 0.9662 | 0.9727 | 0.9373 | 0.9402 | 0.9454 | 0.9505 | ||
DRP-1 | 1.0026 | 1.0831 | 1.0787 | 0.8987 | 0.8891 | 0.8373 | 0.8358 | 0.8427 | 0.8439 | ||
DRP-2 | 1.0375 | 1.1085 | 1.1042 | 0.9478 | 0.9302 | 0.8815 | 0.8785 | 0.8847 | 0.8871 | ||
P2D | 1.6181 | 1.6353 | 0.9089 | 0.8706 | 0.8626 | 0.8409 | 0.6245 | 0.5941 | 0.5837 | ||
SNILP | 1.7324 | 1.7259 | 0.8850 | 0.8710 | 0.7243 | 0.6841 | 0.5549 | 0.5457 | 0.5315 | ||
Cam-E | 31.6573 | RP-1 | 1.1478 | 1.2411 | 1.2495 | 0.9811 | 0.9868 | 0.9932 | 0.9896 | 0.9831 | 0.9224 |
RP-2 | 1.1565 | 1.2377 | 1.2452 | 0.9916 | 0.9915 | 1.0049 | 1.0004 | 0.9872 | 0.9216 | ||
DRP-1 | 1.1485 | 1.2233 | 1.2289 | 0.9702 | 0.9735 | 0.9819 | 0.9800 | 0.9730 | 0.9105 | ||
DRP-2 | 1.1773 | 1.2210 | 1.2219 | 0.9787 | 0.9797 | 0.9949 | 0.9916 | 0.9763 | 0.9102 | ||
P2D | 2.4993 | 2.4501 | 1.3367 | 1.3028 | 1.2036 | 1.1943 | 0.8063 | 0.8079 | 0.8022 | ||
SNILP | 3.1473 | 3.1417 | 1.2073 | 1.1982 | 0.9066 | 0.9005 | 0.7716 | 0.7674 | 0.7560 |
Camera | Model | Degree of Approximation Polynomials s | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Cam-A | DRP-1 | 1.0746 | 1.0775 | 1.0806 | 1.0832 | 1.0832 | 1.0834 | 1.0831 | 1.0832 | 1.0824 |
DRP-2 | 1.0812 | 1.0859 | 1.0876 | 1.0892 | 1.0893 | 1.0895 | 1.0905 | 1.0905 | 1.0901 | |
Cam-B | DRP-1 | 1.1473 | 1.1473 | 1.1511 | 1.1474 | 1.1490 | 1.1488 | 1.1512 | 1.1512 | 1.1542 |
DRP-2 | 1.1469 | 1.1470 | 1.1509 | 1.1477 | 1.1507 | 1.1505 | 1.1527 | 1.1527 | 1.1559 | |
Cam-C | DRP-1 | 1.3260 | 1.3220 | 1.2990 | 1.2903 | 1.2927 | 1.2964 | 1.2962 | 1.2946 | 1.2936 |
DRP-2 | 1.3260 | 1.3214 | 1.2983 | 1.2899 | 1.2930 | 1.2976 | 1.2977 | 1.2962 | 1.2952 | |
Cam-D | DRP-1 | 1.0602 | 1.0563 | 1.0541 | 1.0509 | 1.0500 | 1.0493 | 1.0495 | 1.0500 | 1.0499 |
DRP-2 | 1.0692 | 1.0649 | 1.0626 | 1.0609 | 1.0594 | 1.0596 | 1.0598 | 1.0605 | 1.0606 | |
Cam-E | DRP-1 | 1.0209 | 1.0162 | 1.0119 | 1.0078 | 1.0079 | 1.0086 | 1.0086 | 1.0078 | 1.0061 |
DRP-2 | 1.0216 | 1.0169 | 1.0126 | 1.0086 | 1.0087 | 1.0094 | 1.0093 | 1.0085 | 1.0068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bal, A.; Palus, H. Image Vignetting Correction Using a Deformable Radial Polynomial Model. Sensors 2023, 23, 1157. https://doi.org/10.3390/s23031157
Bal A, Palus H. Image Vignetting Correction Using a Deformable Radial Polynomial Model. Sensors. 2023; 23(3):1157. https://doi.org/10.3390/s23031157
Chicago/Turabian StyleBal, Artur, and Henryk Palus. 2023. "Image Vignetting Correction Using a Deformable Radial Polynomial Model" Sensors 23, no. 3: 1157. https://doi.org/10.3390/s23031157
APA StyleBal, A., & Palus, H. (2023). Image Vignetting Correction Using a Deformable Radial Polynomial Model. Sensors, 23(3), 1157. https://doi.org/10.3390/s23031157