A Simultaneous Pipe-Attribute and PIG-Pose Estimation (SPPE) Using 3-D Point Cloud in Compressible Gas Pipelines
Abstract
:1. Introduction
2. Literature Review and Our Approach
3. A Simultaneous Pipe-Attribute and PIG-Pose Estimation (SPPE)
3.1. Model for Reference Frames and Transformation Invariance
3.2. Transformation to the Geometric Pipe Frame (GPF)
3.3. Transformation to the Navigation Pipe Frame (NPF)
4. Numerical Results
4.1. Ros-Based PIG Simulation
4.2. Accuracy of Iterative LMA Solutions
4.3. Pipe Attributes and PIG Pose
4.4. Robustness to LiDAR Depth Error and LMA Input Size
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- The World Factbook—Central Intelligence Agency. Available online: https://web.archive.org/web/20160821003050/https://www.cia.gov/library/publications/the-world-factbook/fields/2117.html (accessed on 20 October 2022).
- Pick Your Poison For Crude—Pipeline, Rail, Truck Or Boat. Available online: https://www.forbes.com/sites/jamesconca/2014/04/26/pick-your-poison-for-crude-pipeline-rail-truck-or-boat/ (accessed on 20 October 2022).
- Ab Rashid, M.Z.; Mohd Yakub, M.F.; Zaki bin Shaikh Salim, S.A.; Mamat, N.; Syed Mohd Putra, S.M.; Roslan, S.A. Modeling of the in-pipe inspection robot: A comprehensive review. Ocean. Eng. 2020, 203, 107206. [Google Scholar] [CrossRef]
- Aitken, J.M.; Evans, M.H.; Worley, R.; Edwards, S.; Zhang, R.; Dodd, T.; Mihaylova, L.; Anderson, S.R. Simultaneous Localization and Mapping for Inspection Robots in Water and Sewer Pipe Networks: A Review. IEEE Access 2021, 9, 140173–140198. [Google Scholar] [CrossRef]
- Ma, Q.; Tian, G.; Zeng, Y.; Li, R.; Song, H.; Wang, Z.; Gao, B.; Zeng, K. Pipeline In-Line Inspection Method, Instrumentation and Data Management. Sensors 2021, 21, 3862. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, R.; Meng, T.; Zhang, S. The evaluation of the bouncing model of caliper pig’s detection arm in subsea gas pipelines. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2019, 233, 735–744. [Google Scholar] [CrossRef]
- Zhu, X.; Jiao, Q.; Li, X.; Zhang, S.; Liu, S. Experimental research on the precision of wheeled caliper arm for measuring pipeline deformation. Measurement 2018, 127, 15–20. [Google Scholar] [CrossRef]
- Kim, H.M.; Heo, C.G.; Cho, S.H.; Park, G.S. Determination Scheme for Accurate Defect Depth in Underground Pipeline Inspection by Using Magnetic Flux Leakage Sensors. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Heo, C.G.; Im, S.H.; Jeong, H.S.; Cho, S.H.; Park, G.S. Magnetic Hysteresis Analysis of a Pipeline Re-Inspection by Using Preisach Model. IEEE Trans. Magn. 2020, 56, 1–4. [Google Scholar] [CrossRef]
- Olson, M.; Skinner, J.; Vandermark, B. In-Line Inspection of Low-Pressure, Low-Flow Gas Pipelines. Pipeline Gas J. 2018, 245, 56–59. [Google Scholar]
- Kim, S.; Seo, Y. Simulation and Parametric Study of Speed Excursion of PIG in Low-Pressure Gas Pipeline. In Proceedings of the International Ocean and Polar Engineering Conference, Shanghai, China, 11–16 October 2020. [Google Scholar]
- Kim, H.M.; Yoo, H.R.; Park, G.S. A New Design of MFL Sensors for Self-Driving NDT Robot to Avoid Getting Stuck in Curved Underground Pipelines. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Kim, J.; Muramatsu, M.; Murata, Y.; Suga, Y. Omnidirectional vision-based ego-pose estimation for an autonomous in-pipe mobile robot. Adv. Robot. 2007, 21, 441–460. [Google Scholar] [CrossRef]
- Unnikrishnan, P.; Thornton, B.; Ura, T.; Nose, Y. A conical laser light-sectioning method for navigation of Autonomous Underwater Vehicles for internal inspection of pipelines. In Proceedings of the OCEANS 2009-EUROPE, Bremen, Germany, 11–14 May 2009; pp. 1–9. [Google Scholar]
- Dehghan Tezerjani, A.; Mehrandezh, M.; Paranjape, R. 4-DOF pose estimation of a pipe crawling robot using a Collimated Laser, a conic mirror, and a fish-eye camera. In Proceedings of the 2014 Southwest Symposium on Image Analysis and Interpretation, San Diego, CA, USA, 6–8 April 2014; pp. 45–48. [Google Scholar]
- Hosseinzadeh, S.; Jackson, W.; Zhang, D.; McDonald, L.; Dobie, G.; West, G.; MacLeod, C. A Novel Centralization Method for Pipe Image Stitching. IEEE Sens. J. 2021, 21, 11889–11898. [Google Scholar] [CrossRef]
- Buschinelli, P.; Pinto, T.; Silva, F.; Santos, J.; Albertazzi, A. Laser Triangulation Profilometer for Inner Surface Inspection of 100 millimeters (4”) Nominal Diameter. J. Phys. Conf. Ser. 2015, 648, 012010. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Miyatsu, N.; Kondoh, E.; Gelloz, B.; Kanazawa, N.; Yoshizawa, T. Measurement of diameter of cylindrical openings using a disk beam probe. Opt. Rev. 2018, 25, 656–662. [Google Scholar] [CrossRef]
- Hansen, P.; Alismail, H.; Rander, P.; Browning, B. Monocular visual odometry for robot localization in LNG pipes. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3111–3116. [Google Scholar]
- Hansen, P.; Alismail, H.; Rander, P.; Browning, B. Visual mapping for natural gas pipe inspection. Int. J. Robot. Res. 2015, 34, 532–558. [Google Scholar] [CrossRef]
- Kagami, S.; Taira, H.; Miyashita, N.; Torii, A.; Okutomi, M. 3D Pipe Network Reconstruction Based on Structure from Motion with Incremental Conic Shape Detection and Cylindrical Constraint. In Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020; pp. 1345–1352. [Google Scholar]
- Summan, R.; Dobie, G.; West, G.; Marshall, S.; MacLeod, C.; Pierce, S.G. The Influence of the Spatial Distribution of 2-D Features on Pose Estimation for a Visual Pipe Mapping Sensor. IEEE Sens. J. 2017, 17, 6312–6321. [Google Scholar] [CrossRef] [Green Version]
- Ultra-Wide View High-Resolution Imaging Lidar. Available online: https://positics.fr/wp-content/uploads/2021/03/Datasheet-OUSTER-OS0.pdf (accessed on 20 October 2022).
- Helios 2 Time of Flight (ToF) IP67 3D Camera. Available online: https://thinklucid.com/product/helios2-time-of-flight-imx556/?gclid=Cj0KCQiApb2bBhDYARIsAChHC9u0xAqwjrZDnDomoTUKMEHpwdrse4shOR1maav0yS2gpzCVth8MBrcaAr0JEALw_wcB (accessed on 20 October 2022).
- Ranganathan, A. The levenberg-marquardt algorithm. Tutoral Algorithm 2004, 11, 101–110. [Google Scholar]
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Fan, J.Y. A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations. J. Comput. Math. 2003, 21, 625–636. [Google Scholar]
- Titterton, D.; Weston, J.; Weston, J. Strapdown Inertial Navigation Technology; IET Radar, Sonar, Navigation and Avionics Series; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2004.
- Diebel, J. Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix 2006, 58, 1–35. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Hartley, H.O. The modified Gauss-Newton method for the fitting of non-linear regression functions by least squares. Technometrics 1961, 3, 269–280. [Google Scholar] [CrossRef]
- Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5. [Google Scholar]
Category | Parameter | Notation | Value | Unit |
---|---|---|---|---|
Pipe attribute | Pipe diameter | D | 16, 20, 24, 30 | inch |
Pipe thickness | T | 12 | mm | |
Ovality angle | [, 180) | |||
PIG pose | Roll angle | |||
Pitch angle | ||||
Yaw angle | ||||
Y-axis displacement | mm | |||
Z-axis displacement | mm | |||
LiDAR Specification | Angular resolution | - | - | |
Depth error | 0.03 | m | ||
Field of view | FoV | 60 | ||
Maximum ranging | 6 | m |
SPPE Error Metric | LMA Input Size | ||||
---|---|---|---|---|---|
10 | |||||
Major-axis length (mm) | Mean | 27.628 | 3.874 | 2.310 | 2.144 |
Std. Dev. | 32.637 | 3.845 | 1.114 | 0.383 | |
Minor-axis length (mm) | Mean | −16.673 | 0.232 | 1.866 | 2.059 |
Std. Dev. | 24.256 | 3.270 | 1.053 | 0.406 | |
Ovality angle (deg) | Mean | −0.822 | −1.296 | 1.965 | −0.262 |
Std. Dev. | 53.093 | 31.798 | 9.307 | 3.093 | |
Pitch angle (deg) | Mean | −0.138 | −0.010 | 0.001 | 0.003 |
Std. Dev. | 2.342 | 0.090 | 0.026 | 0.015 | |
Yaw angle (deg) | Mean | 0.141 | −0.012 | 0.001 | −0.002 |
Std. Dev. | 2.379 | 0.096 | 0.025 | 0.013 | |
-axis displacement (mm) | Mean | −0.313 | 0.390 | −0.033 | 0.030 |
Std. Dev. | 34.775 | 2.893 | 0.829 | 0.348 | |
-axis displacement (mm) | Mean | −2.099 | −0.261 | 0.032 | 0.047 |
Std. Dev. | 32.449 | 2.804 | 0.836 | 0.398 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.-H.; Park, J.-H.; Jeong, H.-Y. A Simultaneous Pipe-Attribute and PIG-Pose Estimation (SPPE) Using 3-D Point Cloud in Compressible Gas Pipelines. Sensors 2023, 23, 1196. https://doi.org/10.3390/s23031196
Nguyen H-H, Park J-H, Jeong H-Y. A Simultaneous Pipe-Attribute and PIG-Pose Estimation (SPPE) Using 3-D Point Cloud in Compressible Gas Pipelines. Sensors. 2023; 23(3):1196. https://doi.org/10.3390/s23031196
Chicago/Turabian StyleNguyen, Hoa-Hung, Jae-Hyun Park, and Han-You Jeong. 2023. "A Simultaneous Pipe-Attribute and PIG-Pose Estimation (SPPE) Using 3-D Point Cloud in Compressible Gas Pipelines" Sensors 23, no. 3: 1196. https://doi.org/10.3390/s23031196
APA StyleNguyen, H. -H., Park, J. -H., & Jeong, H. -Y. (2023). A Simultaneous Pipe-Attribute and PIG-Pose Estimation (SPPE) Using 3-D Point Cloud in Compressible Gas Pipelines. Sensors, 23(3), 1196. https://doi.org/10.3390/s23031196