Optimization of an Impact-Based Frequency Up-Converted Piezoelectric Vibration Energy Harvester for Wearable Devices
Abstract
:1. Introduction
2. Description of the Operational Principle and Numerical Model
3. Optimization of a Cantilever Beam at the Microscale
4. Numerical Model Validation on a Macroscale Prototype
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corigliano, A.; Ardito, R.; Comi, C.; Frangi, A.; Ghisi, A.; Mariani, S. Mechanics of Mycrosystems; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Gafforelli, G.; Ardito, R.; Corigliano, A. Improved one dimensional model of piezoelectric laminates for energy harvesters including three-dimensional effects. Comp. Struct. 2015, 127, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Jacquelin, E.; Adhikari, S.; Friswell, M.I. A piezoelectric device for impact energy harvesting. Smart Mater. Struct. 2011, 20, 105008. [Google Scholar] [CrossRef]
- Liu, M.; Qian, F.; Mi, J.; Zuo, L. Biomechanical energy harvesting for wearable and mobile devices: State of the art and future directions. Appl. Energy 2022, 321, 119379. [Google Scholar] [CrossRef]
- Ekimov, A.; Sabatier, J.M. Human Motion Characterization; Army Research Office: Adelphi, MD, USA, 2008. [Google Scholar]
- Antonsson, E.K.; Mann, R.W. The frequency content of Gait. J. Biomech. 1985, 18, 39–47. [Google Scholar] [CrossRef]
- Sardo, F.R.; Rayegani, A.; Nazar, A.M.; Balaghiinaloo, M.; Saberian, M.; Mohsan, S.; Alshrif, M.H.; Cho, H.S. Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application. Biosensors 2022, 12, 697. [Google Scholar] [CrossRef]
- Acharya, K.R.; Harris, G.F.; Riedel, S.A.; Kazarian, L. Force magnitude and spectral frequency content of heel strike during gait. In Images of the Twenty-First Century. Proceedings of the Annual International Engineering in Medicine and Biology Society, Seattle, WA, USA, 9–12 November 1989; IEEE: Piscataway, NJ, USA, 1989. [Google Scholar]
- Hribernik, M.; Umek, A.; Tomazic, S.; Kos, A. Review of Real-Time Biomechanical Feedback System in Sport and Rehabilitation. Sensors 2022, 22, 3006. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. Piezoelectric Energy Harvesting; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Roundy, S.; Wright, P.K.; Rabaey, J.M. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 2003, 26, 1131–1144. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, J.H.; Kim, J. A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 2011, 12, 1129–1141. [Google Scholar] [CrossRef]
- Du Toit, N.E.; Wardle, B.L.; Kim, S.G. Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters. Integr. Ferroelectr. 2005, 71, 121–160. [Google Scholar] [CrossRef]
- Ardito, R.; Corigliano, A.; Gafforelli, G.; Valzasina, C.; Procopio, F.; Zafalon, R. Advanced model for fast assessment of piezoelectric micro energy harvesters. Front. Mater. 2016, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, M.; Ferrari, V.; Guizzetti, M.; Marioli, D. Piezoelectric low-curing-temperature ink for sensors and power harvesting. Lect. Notes Electr. Eng. 2010, 54, 77–81. [Google Scholar]
- Clementi, G.; Cottone, F.; Di Michele, A.; Gammaitoni, L.; Mattarelli, M.; Perna, G.; Lopez-Suarez, M.; Baglio, S.; Trigona, C.; Neri, I. Review on Innovative Piezoelectric Materials for Mechanical Energy Harvesting. Energies 2022, 15, 6227. [Google Scholar] [CrossRef]
- Godfrey, A.; Conway, R.; Meagher, D.; ÒLaighin, G. Direct measurement of human movement by accelerometry. Med. Eng. Phys. 2008, 30, 1364–1386. [Google Scholar] [CrossRef] [PubMed]
- Kulah, H.; Najafi, K. Energy scaveging from low-frequency vibrations by using frequency-up conversion for wireless sensor applications. IEEE Sens. J. 2008, 8, 261–268. [Google Scholar] [CrossRef]
- Hajati, A.; Kim, S.G. Ultra-wide bandwidth piezoelectric energy harvesting. App. Phys. 2011, 99, 83105. [Google Scholar] [CrossRef] [Green Version]
- Gafforelli, G.; Xu, R.; Corigliano, A.; Kim, S.G. Modelling of a bridge-shape nonlinear piexoelectric energy harvester. J. Phys. Conf. Ser. 2013, 476, 012100. [Google Scholar] [CrossRef] [Green Version]
- Gafforelli, G.; Xu, R.; Corigliano, A.; Kim, S.G. Experimental verification of a bridge shaped, nonlinear vibration energy harvesting. Appl. Phys. Let. 2014, 105, 203901. [Google Scholar] [CrossRef] [Green Version]
- Cottone, F.; Gammaitoni, L.; Vocca, H.; Ferrari, M.; Ferrari, V. Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater. Struct. 2012, 21, 35021. [Google Scholar] [CrossRef]
- Andò, B.; Baglio, S.; Bulsara, A.R.; Marletta, V.; Ferrari, V.; Ferrari, M. A low cost snap through buckling inkjet-printed device for vibrational energy harvesting. IEEE Sens. J. 2015, 15, 3209–3220. [Google Scholar] [CrossRef]
- Speciale, A.; Ardito, R.; Baù, M.; Ferrari, M.; Ferrari, V.; Frangi, A. Snap through buckling mechanism for frequency up conversion in piezoelectric energy harvesting. Appl. Sci. 2020, 10, 3614. [Google Scholar] [CrossRef]
- Osinaga, S.M.; Machado, S.P.; Febbo, M. An analytical model of the electromechanical coupling for a piezoelectric stepped buckled beam for energy harvesting applications. Mech. Syst. Signal Process. 2022, 179, 109355. [Google Scholar] [CrossRef]
- Challa, V.R.; Prasad, M.G.; Shi, Y.; Fisher, F.T. A vibration energy harvesting device with biderectional resonance frequency tunability. Smart Mater. Struct. 2008, 17, 15035. [Google Scholar] [CrossRef]
- Procopio, F.; Valsazina, C.; Corigliano, A.; Ardito, R.; Gafforelli, G. Piezoelectric Transducer for an Energy Harvesting System. U.S. Patent US20150035409, 29 July 2014. [Google Scholar]
- Rosso, M.; Kohtanen, E.; Corigliano, A.; Ardito, R.; Erturk, A. Dynamical Behavior of Frequency up-Converted Piezoelectric Vibration Energy Harvesters at Different Velocities of Magnetic Interaction. In Proceedings of the 2022 21st International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), Salt Lake City, UT, USA, 12–15 December 2022. [Google Scholar]
- Rosso, M.; Nastro, A.; Ferrari, M.; Ferrari, V.; Corigliano, A.; Ardito, R. Piezoelectric Energy Harvesting from Low-Frequency Vibrations Based on Magnetic Plucking and Indirect Impacts. Sensors 2022, 22, 5911. [Google Scholar] [CrossRef]
- Ferrari, M.; Ghisi, A.; Baù, M.; Ferrari, V. Nonlinear multi-frequency convert array for vibration energy harvesting in autonomous sensors. Procedia Eng. 2012, 47, 410–413. [Google Scholar] [CrossRef] [Green Version]
- Alghisi, D.; Ferrari, V.; Ferrari, M.; Touati, F.; Mnaouer, A.B. A new nano-power trigger circuit for battery-less power management electronics in energy harvesting systems. Sens. Actuators A 2017, 263, 305–316. [Google Scholar] [CrossRef]
- Alghisi, D.; Ferrari, V.; Ferrari, M.; Crescini, D.; Touati, F.; Mnaouer, A.B. Single and multi source battery less power management circuits for piezoelectric energy harvesting systems. Sens. Actuators A 2017, 264, 234–246. [Google Scholar] [CrossRef]
- Febbo, M.; Machado, S.P. Rotational multi-beam energy harvester with up-conversion mechanism in an extremely low frequency scenario. Mech. Syst. Signal Process. 2022, 168, 108737. [Google Scholar] [CrossRef]
- de Ponti, J.M.; Colombi, A.; Ardito, R.; Braghin, F.; Corigliano, A.; Craster, R.V. Graded elestic metasurface for enhanced energy harvesting. New J. Phys. 2020, 22, 013013. [Google Scholar] [CrossRef]
- de Ponti, J.M.; Colombi, A.; Riva, E.; Ardito, R.; Braghin, F.; Corigliano, A.; Craster, R.V. Experimental investigation of amplification, via a mechanical delay-line, in a rainbow-based metamaterial for energy harvesting. Appl. Phys. Let. 2020, 117, 143902. [Google Scholar] [CrossRef]
- Chaplain, G.J.; de Ponti, J.M.; Aguzzi, G.; Colombi, A.; Craster, R.V. Topological rainbow trapping for elastic energy harvesting in graded Su-Schrieffer-Heeger systems. Phys. Rev. Appl. 2020, 14, 054035. [Google Scholar] [CrossRef]
- Chen, W.; MO, J.L.; Xiang, Z.Y.; Wang, A.Y.; Liu, Q.A.; Qian, H.H. A new concept of frequency-excitation-up conversion to improve the yield of linear piezoelectric generators. Sens. Actuators A 2021, 325, 112712. [Google Scholar] [CrossRef]
- Tsukamoto, T.; Umino, Y.; Shiomi, S.; Yamada, K.; Suzuki, T. Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration. Sci. Technol. Adv. Mater. 2018, 1, 660–668. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Wang, Y.Q.; Zuo, L.; Zu, J. Introducing Arc-Shaped Piezoelectric Elements into Energy Harvesters. Energy Convers. Manag. 2018, 148, 260–266. [Google Scholar] [CrossRef]
- Suna, J.; Chang-Hyeon, J. Impact-based piezoelectric vibration energy harvesting. Appl. Energy 2018, 214, 139–151. [Google Scholar]
- Thainiramit, P.; Yingyong, P.; Isarakorn, D. Impact-driven energy harvesting:piezoelectric versus triboelectric energy harvesters. Sensors 2020, 20, 5828. [Google Scholar] [CrossRef]
- Umeda, M.; Nakamura, K.; Ueha, S. Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator. Jpn. J. Appl. Phys. 1996, 35, 3267–3273. [Google Scholar] [CrossRef]
- Nastro, A.; Pienazza, N.; Baù, M.; Aceti, P.; Rouvala, M.; Ardito, R.; Ferrari, M.; Corigliano, A.; Ferrari, V. Wearable Ball-Impact Piezoelectric Multi-Converters for Low-Frequency Energy Harvesting from Human Motion. Sensors 2022, 22, 772. [Google Scholar] [CrossRef]
- 176-1987-IEEE Standard on Piezoelectricity; The Institute of Electrical and Electronic Engineers: Piscataway, NJ, USA, 1988.
- Jeong, J.J.; Choi, H. An impedance measurement system for piezoelectric array element transducers. Measurement 2017, 97, 138–144. [Google Scholar] [CrossRef]
- Kientzy, D.; Richardson, M.; Blakely, J.K. Using finite element data to set un modal tests. J. Sound Vib. 1989, 23, 16–23. [Google Scholar]
- Pillatsch, P.; Shashoua, N.; Holmes, A.S.; Yeatman, E.M.; Wright, P.K. Degradation of Piezoelectric Materials for Energy Harvesting Applications. J. Phys. Conf. Ser. 2014, 557, 012129. [Google Scholar] [CrossRef]
Material | Mass Density [kg/m3] | Young’s Modulus [GPa] | Poisson’s Ratio | e31 * [N/(Vm)] | e33 * [N/(Vm)] | |
---|---|---|---|---|---|---|
Silicon | 2330 | 148 | 0.3 | - | - | - |
PZT, thin film | 7700 | 100 | 0.3 | −12 | 20 | 2000 |
Material | In-plane Dimensions [m × m] | Thickness [m] |
---|---|---|
Silicon | 3000 × 1500 | 6 |
PZT, thin film | 3000 × 1500 | 2 |
CASE | Cross-section Size of the Tip Mass [m × m] | Eigen-Frequency fr [Hz] | Rayleigh Coefficient | Optimal Electrical Resistance Ropt [ |
---|---|---|---|---|
TM1 | 1070 × 1070 | 52.59 | 0.66 | 76.03 |
TM2 | 750 × 750 | 70.68 | 0.88 | 56.57 |
TM3 | 618 × 618 | 83.43 | 1.05 | 47.92 |
TM4 | 535 × 535 | 94.62 | 1.19 | 42.26 |
TM10 | 338 × 338 | 142.26 | 1.79 | 28.11 |
WTM | - | 875.97 | 10.83 | 4.64 |
Material | Mass Density [kg/m3] | Young’s Modulus [GPa] | Poisson’s Ratio [-] | d31 * | Relative Dielectric Constant (Static) |
---|---|---|---|---|---|
Titanium | 4500 | 115 | 0.3 | - | - |
NTK code MT-11 | 7500 | 60 | 0.3 | 215 | 2000 |
Material | In-plane Dimensions [mm × mm] | Thickness |
---|---|---|
Titanium | 1.5 × 15 | 65 |
NTK code MT-11 | 1.5 × 15 | 280 (for each layer) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aceti, P.; Rosso, M.; Ardito, R.; Pienazza, N.; Nastro, A.; Baù, M.; Ferrari, M.; Rouvala, M.; Ferrari, V.; Corigliano, A. Optimization of an Impact-Based Frequency Up-Converted Piezoelectric Vibration Energy Harvester for Wearable Devices. Sensors 2023, 23, 1391. https://doi.org/10.3390/s23031391
Aceti P, Rosso M, Ardito R, Pienazza N, Nastro A, Baù M, Ferrari M, Rouvala M, Ferrari V, Corigliano A. Optimization of an Impact-Based Frequency Up-Converted Piezoelectric Vibration Energy Harvester for Wearable Devices. Sensors. 2023; 23(3):1391. https://doi.org/10.3390/s23031391
Chicago/Turabian StyleAceti, Pietro, Michele Rosso, Raffaele Ardito, Nicola Pienazza, Alessandro Nastro, Marco Baù, Marco Ferrari, Markku Rouvala, Vittorio Ferrari, and Alberto Corigliano. 2023. "Optimization of an Impact-Based Frequency Up-Converted Piezoelectric Vibration Energy Harvester for Wearable Devices" Sensors 23, no. 3: 1391. https://doi.org/10.3390/s23031391
APA StyleAceti, P., Rosso, M., Ardito, R., Pienazza, N., Nastro, A., Baù, M., Ferrari, M., Rouvala, M., Ferrari, V., & Corigliano, A. (2023). Optimization of an Impact-Based Frequency Up-Converted Piezoelectric Vibration Energy Harvester for Wearable Devices. Sensors, 23(3), 1391. https://doi.org/10.3390/s23031391