Measurement System for Short-Pulsed Magnetic Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Film Preparation
2.2. Characterization
3. Results and Discussion
3.1. Resistivity of Nanostructured LSMO Films: Dependence on Composition and Ambient Temperature
3.2. Magnetic Field Sensor
3.3. B-Scalar Meter
3.4. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abate, D.; Cavazzana, R. Effective Area Measurements of Magnetic Pick-Up Coil Sensors for RFX-mod2. Sensors 2022, 22, 9767. [Google Scholar] [CrossRef] [PubMed]
- Coupland, J.H.; Randle, T.C.; Watson, M.J. A magnetic spectrometer with gradient field. IEEE Trans. Magn. 1981, 17, 1851–1854. [Google Scholar] [CrossRef]
- Tumanski, S. Indution coil sensors—A review. Meas. Sci. Technol. 2007, 18, R31–R46. [Google Scholar] [CrossRef]
- Wei, S.; Liao, X.; Zhang, H.; Pang, J.; Zhou, Y. Recent Progress of Fluxgate Magnetic Sensors: Basic Research and Application. Sensors 2021, 21, 1500. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-S.; Yang, J.-H.; Lee, S.-Y.; Lee, J.-W.; Lee, J.-H. Wearable Fabric Loop Sensor Based on Magnetic–Field–Induced Conductivity for Simultaneous Detection of Cardiac Activity and Respiration Signals. Sensors 2022, 22, 9884. [Google Scholar] [CrossRef] [PubMed]
- Marconato, N. Design of Integrated Micro-Fluxgate Magnetic Sensors: Advantages and Challenges of Numerical Analyses. Sensors 2022, 22, 961. [Google Scholar] [CrossRef]
- Hosozawa, A.; Sekiguchi, J.; Asai, T.; Takahashi, T. Application of a Hall sensor for pulsed magnetic field measurement in the FAT–CM FRC experiments. Rev. Sci. Instr. 2018, 89, 10J12. [Google Scholar] [CrossRef]
- Kawahito, S.; Choi, S.O.; Ishida, M.; Nakamura, T. Micromachined Hall elements for two-dimensional magnetic-field sensing. Sens. Actuators A Phys. 1994, 40, 141–146. [Google Scholar] [CrossRef]
- Lenz, J.; Edelstein, A.S. Magnetic sensors and their applications. IEEE Sens. J. 2006, 6, 631–649. [Google Scholar] [CrossRef]
- Jogschies, L.; Klaas, D.; Kruppe, R.; Rittinger, J.; Taptimthong, P.; Wienecke, A.; Rissing, L.; Wurz, M.C. Recent developments of magnetoresistive sensors for industrial applications. Sensors 2015, 15, 28665–28689. [Google Scholar] [CrossRef]
- Khan, M.A.; Sun, J.; Li, B.; Przybysz, A.; Kosel, J. Magnetic sensors-A review and recent technologies. Eng. Res. Express 2021, 3, 02200. [Google Scholar] [CrossRef]
- Murzin, D.; Mapps, D.J.; Levada, K.; Belyaev, V.; Omelyanchik, A.; Panina, L.; Rodionova, V. Ultrasensitive Magnetic Field Sensors for Biomedical Applications. Sensors 2020, 20, 1569. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Zhu, K.; de Freitas, S.C.; Chang, J.-Y.; Davies, J.E.; Eames, P.; Freitas, P.P.; Kazakova, O.; Kim, C.; Leung, C.-W.; et al. Magnetoresistive sensor development roadmap (non-recording applications). IEEE Trans. Magn. 2019, 55, 0800130. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Lyu, F.; Wang, D.; Pan, H. A new design of a single–device 3d Hall sensor: Cross–shaped 3D Hall sensor. Sensors 2018, 18, 1065. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zhang, S.; Luo, S.; Guo, Z.; Xu, Y.; Ouyang, J.; Song, M.; Zou, Q.; Xi, L.; Yang, X.; et al. A spin–orbit torque device for sensing three-dimensional magnetic fields. Nat. Electron. 2021, 4, 179–184. [Google Scholar] [CrossRef]
- Shiogai, J.; Fujiwara, K.; Nojima, T.; Tsukazaki, A. Three-dimensional sensing of the magnetic-field vector by a compact planar-type Hall device. Commun. Mater. 2021, 2, 102. [Google Scholar] [CrossRef]
- Alfadhel, A.; Carreno, A.A.A.; Foulds, I.G.; Kosel, J. Three-Axis Magnetic Field Induction Sensor Realized on Buckled Cantilever Plate. IEEE Trans. Magn. 2013, 49, 4144–4147. [Google Scholar] [CrossRef]
- Stankevič, T.; Medišauskas, L.; Stankevič, V.; Balevičius, S.; Žurauskiene, N.; Liebfried, O.; Schneider, M. Pulsed magnetic field measurement system based on colossal magnetoresistance-B-scalar sensors for railgun investigation. Rev. Sci. Instrum. 2014, 85, 044704. [Google Scholar] [CrossRef]
- Haran, T.L.; Hoffman, R.B.; Lane, S.E. Diagnostic capabilities for electromagnetic railguns. IEEE Trans. Plasma Sci. 2013, 41, 1526–1532. [Google Scholar] [CrossRef]
- Balevičius, S.; Žurauskiene, N.; Stankevič, V.; Keršulis, S.; Plaušinaitiene, V.; Abrutis, A.; Zherlitsyn, S.; Herrmannsdörfer, T.; Wosnitza, J.; Wolff–Fabris, F. Nanostructured thin manganite films in megagauss magnetic field. Appl. Phys. Lett. 2012, 101, 092407. [Google Scholar] [CrossRef]
- Žurauskiene, N.; Pavilonis, D.; Klimantavicius, J.; Balevičius, S.; Stankevič, V.; Vasiliauskas, R.; Plaušinaitiene, V.; Abrutis, A.; Skapas, M.; Juškenas, R. Magnetoresistance relaxation anisotropy of nanostructured La-Sr(Ca)-Mn-O films induced by high-pulsed magnetic fields. IEEE Trans. Plasma Sci. 2017, 45, 2773–2779. [Google Scholar] [CrossRef]
- Portugall, O.; Solane, P.Y.; Plochocka, P.; Maude, D.K.; Nicholas, R.J. Beyond 100 Tesla: Scientific experiments using single-turn coils. Comptes Rendus Phys. 2013, 14, 115–120. [Google Scholar] [CrossRef]
- Portugall, O.; Puhlmann, N.; Muller, H.U.; Barczewski, M.; Stolpe, I.; von Ortenberg, M. Megagauss magnetic field generation in single-turn coils: New frontiers for scientific experiments. J. Phys. D Appl. Phys. 1999, 32, 2354–2366. [Google Scholar] [CrossRef]
- Novac, B.M.; Smith, I.R.; Rankin, D.F.; Pu, Z.; Hubbard, M. Electromagnetic flux-compression: Experimentation. Digest of Technical Papers. In Proceedings of the 14th IEEE International Pulsed Power Conference, Dallas, TX, USA, 15–18 June 2003; Volume 1, pp. 681–684. [Google Scholar]
- Novac, B.M.; Hook, N.D.; Smith, I.R. Magnetic flux-compression driven by exploding single-turn coils. In Proceedings of the IEEE International Power Modulator and High Voltage Conference, Atlanta, GA, USA, 23–27 May 2010; pp. 129–132. [Google Scholar]
- Bellmann, J.; Lueg-Althoff, J.; Schulze, S.; Gies, S.; Beyer, E.; Tekkaya, A.E. Measurement and analysis technologies for magnetic pulse welding: Established methods and new strategies. Adv. Manuf. 2016, 4, 322–339. [Google Scholar] [CrossRef]
- Broeckhove, J.; Willemsens, L.; Faes, K.; DeWaele, W. Magnetic pulse welding. Int. J. Sustain. Constr. Des. 2011, 1, 21–28. [Google Scholar] [CrossRef]
- Sirena, M.; Steren, L.B.; Guimpel, J. Magnetic relaxation in bulk and film manganite compounds. Phys. Rev. B 2001, 64, 104409. [Google Scholar] [CrossRef]
- Zurauskiene, N.; Balevicius, S.; Pavilonis, D.; Stankevic, V.; Kersulis, S.; Novickij, J. Magnetoresistance relaxation in thin La-Sr-Mn-O films exposed to high-pulsed magnetic fields. IEEE Trans. Plasma Sci. 2013, 41, 2830–2835. [Google Scholar] [CrossRef]
- Zurauskiene, N.; Rudokas, V.; Balevicius, S.; Kersulis, S.; Stankevic, V.; Vasiliauskas, R.; Plausinaitiene, V.; Vagner, M.; Lukose, R.; Skapas, M.; et al. Nanostructured La–Sr–Mn–Co–O films for room-temperature pulsed magnetic field sensors. IEEE Trans. Magn. 2017, 53, 4002645. [Google Scholar] [CrossRef]
- Zurauskiene, N.; Rudokas, V.; Kersulis, S.; Stankevic, V.; Pavilonis, D.; Plausinaitiene, V.; Vagner, M.; Balevicius, S. Magnetoresistance and its relaxation of nanostructured La–Sr–Mn–Co–O films: Application for low temperature magnetic sensors. J. Magn. Magn. Mater. 2021, 539, 168340. [Google Scholar] [CrossRef]
- Zurauskiene, N.; Stankevic, V.; Kersulis, S.; Klimantavicius, J.; Simkevicius, C.; Plausinaitiene, V.; Vagner, M.; Balevicius, S. Increase of operating temperature of magnetic field sensors based on La–Sr–Mn–O films with Mn excess. IEEE Trans. Plasma Sci. 2019, 47, 4530–4535. [Google Scholar] [CrossRef]
- Balevicius, S.; Zurauskiene, Z.; Stankevic, V.; Stankevic, T.; Novickij, J.; Schneider, M. High-Frequency CMR–B–Scalar Sensor for Pulsed Magnetic Field Measurement. IEEE Trans. Plasma Sci. 2013, 41, 2885–2889. [Google Scholar] [CrossRef]
- Mironov, O.A.; Zherlitsyn, S.; Uhlarz, M.; Skoursli, Y.; Palewski, T.; Wosnitza, J. Micro-miniature Hall probes for applications at pulsed magnetic fields up to 87 Tesla. J. Low Temp. Phys. 2010, 159, 315–318. [Google Scholar] [CrossRef]
- Imamura, H.; Uchida, K.; Ohmichi, E.; Osada, T. Magnetotransport measurements of low dimensional conductors under pulsed ultra-high magnetic fields. J. Phys. Conf. Ser. 2006, 51, 303–306. [Google Scholar] [CrossRef]
- Zurauskiene, N.; Balevicius, S.; Stankevic, V.; Kersulis, S.; Klimantavicius, J.; Plausinaitiene, V.; Kubilius, V.; Skapas, M.; Juskenas, R.; Navickas, R. Magnetoresistive properties of thin nanostructured manganite films grown by metalorganic chemical vapour deposition onto glass-ceramics substrates. J. Mater. Sci. 2018, 53, 12996–13009. [Google Scholar] [CrossRef]
- Abrutis, A.; Plausinaitiene, V.; Kubilius, V.; Teiserskis, A.; Saltyte, Z.; Butkute, R.; Senateur, J.P. Magnetoresistant La1yxSrxMnO3 films by pulsed injection metal organic chemical vapor deposition: Effect of deposition conditions, substrate material and film thickness. Thin Solid Films 2002, 413, 32–40. [Google Scholar] [CrossRef]
- Lukose, R.; Plausinaitiene, V.; Vagner, M.; Zurauskiene, N.; Kersulis, S.; Kubilius, V.; Naujalis, E. Relation between thickness, crystallite size and magnetoresistance of nanostructured La1−xSrxMnyO3±δ films for magnetic field sensors. Beilstein J. Nanotechnol. 2019, 10, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Novickij, J.; Balevicius, S.; Zurauskiene, N.; Kacianauskas, R.; Stankevic, V.; Simkevicius, C.; Kersulis, S.; Bartkevicius, S. Vilnius high magnetic field centre facilities. J. Low Temp. Phys. 2010, 159, 406–409. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stankevič, V.; Keršulis, S.; Dilys, J.; Bleizgys, V.; Viliūnas, M.; Vertelis, V.; Maneikis, A.; Rudokas, V.; Plaušinaitienė, V.; Žurauskienė, N. Measurement System for Short-Pulsed Magnetic Fields. Sensors 2023, 23, 1435. https://doi.org/10.3390/s23031435
Stankevič V, Keršulis S, Dilys J, Bleizgys V, Viliūnas M, Vertelis V, Maneikis A, Rudokas V, Plaušinaitienė V, Žurauskienė N. Measurement System for Short-Pulsed Magnetic Fields. Sensors. 2023; 23(3):1435. https://doi.org/10.3390/s23031435
Chicago/Turabian StyleStankevič, Voitech, Skirmantas Keršulis, Justas Dilys, Vytautas Bleizgys, Mindaugas Viliūnas, Vilius Vertelis, Andrius Maneikis, Vakaris Rudokas, Valentina Plaušinaitienė, and Nerija Žurauskienė. 2023. "Measurement System for Short-Pulsed Magnetic Fields" Sensors 23, no. 3: 1435. https://doi.org/10.3390/s23031435
APA StyleStankevič, V., Keršulis, S., Dilys, J., Bleizgys, V., Viliūnas, M., Vertelis, V., Maneikis, A., Rudokas, V., Plaušinaitienė, V., & Žurauskienė, N. (2023). Measurement System for Short-Pulsed Magnetic Fields. Sensors, 23(3), 1435. https://doi.org/10.3390/s23031435