Pipeline Leakage Detection Based on Secondary Phase Transform Cross-Correlation
Abstract
:1. Introduction
2. Methodology
2.1. Background of Pipeline Leak Detection
2.2. Secondary PHAT Cross-Correlation
3. Simulations
3.1. Leak Identification
3.1.1. Pipe without Leakage
3.1.2. Pipe with Leakage
3.2. Leak Localization
4. Experiments
4.1. Experimental Setup
4.2. Results and Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meribout, M. Gas Leak-Detection and Measurement Systems: Prospects and Future Trends. IEEE Trans. Instrum. Meas. 2021, 70, 4505813. [Google Scholar] [CrossRef]
- Cui, X.; Yan, Y.; Guo, M.; Han, X.; Hu, Y. Localization of CO2 Leakage from a Circular Hole on a Flat-Surface Structure Using a Circular Acoustic Emission Sensor Array. Sensors 2016, 16, 1951. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Lin, J.; Ge, Y.; Lu, S.; Zhang, Y. A Mechanism and Method of Leak Detection for Pressure Vessel: Whether, When, and How. IEEE Trans. Instrum. Meas. 2020, 69, 6004–6015. [Google Scholar] [CrossRef]
- Ostapkowicz, P.; Bratek, A. Accuracy and Uncertainty of Gradient Based Leak Localization Procedure for Liquid Transmission Pipelines. Sensors 2021, 21, 5080. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, Q.; Qian, Z.; Yang, X. A novel location algorithm for pipeline leakage based on the attenuation of negative pressure wave. Process. Saf. Environ. Prot. 2019, 123, 309–316. [Google Scholar] [CrossRef]
- Sekhavati, J.; Hashemabadi, S.H.; Soroush, M. Computational methods for pipeline leakage detection and localization: A review and comparative study. J. Loss Prev. Process. Ind. 2022, 77, 104771. [Google Scholar] [CrossRef]
- Abdulshaheed, A.; Mustapha, F.; Ghavamian, A. A pressure-based method for monitoring leaks in a pipe distribution system: A Review. Renew. Sustain. Energy Rev. 2017, 69, 902–911. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmad, Z.; Kim, C.-H.; Kim, J.-M. A Method for Pipeline Leak Detection Based on Acoustic Imaging and Deep Learning. Sensors 2022, 22, 1562. [Google Scholar] [CrossRef]
- Lu, H.; Iseley, T.; Behbahani, S.; Fu, L. Leakage detection techniques for oil and gas pipelines: State-of-the-art. Tunn. Undergr. Space Technol. 2020, 98, 103249. [Google Scholar] [CrossRef]
- Puust, R.; Kapelan, Z.; Savic, D.A.; Koppel, T. A review of methods for leakage management in pipe networks. Urban Water J. 2010, 7, 25–45. [Google Scholar] [CrossRef]
- Yang, S.; Talbot, R.W.; Frish, M.B.; Golston, L.M.; Aubut, N.F.; Zondlo, M.A.; Gretencord, C.; McSpiritt, J. Natural Gas Fugitive Leak Detection Using an Unmanned Aerial Vehicle: Measurement System Description and Mass Balance Approach. Atmosphere 2018, 9, 383. [Google Scholar] [CrossRef]
- Yahia, M.; Gawai, R.; Ali, T.; Mortula, M.; Albasha, L.; Landolsi, T. Non-Destructive Water Leak Detection Using Multitemporal Infrared Thermography. IEEE Access 2021, 9, 72556–72567. [Google Scholar] [CrossRef]
- Stajanca, P.; Chruscicki, S.; Homann, T.; Seifert, S.; Schmidt, D.; Habib, A. Detection of Leak-Induced Pipeline Vibrations Using Fiber—Optic Distributed Acoustic Sensing. Sensors 2018, 18, 2841. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Salman, T.; Tarek, Z. A comprehensive review of acoustic based leak localization method in pressurized pipelines. Mech. Syst. Signal Process. 2021, 161, 107994. [Google Scholar] [CrossRef]
- Niri, E.D.; Farhidzadeh, A.; Salamone, S. Nonlinear Kalman Filtering for acoustic emission source localization in anisotropic panels. Ultrasonics 2014, 54, 486–501. [Google Scholar] [CrossRef]
- Murvay, P.-S.; Silea, I. A survey on gas leak detection and localization techniques. J. Loss Prev. Process. Ind. 2012, 25, 966–973. [Google Scholar] [CrossRef]
- Cui, X.; Yan, Y.; Ma, Y.; Ma, L.; Han, X. Localization of CO2 leakage from transportation pipelines through low frequency acoustic emission detection. Sens. Actuators A Phys. 2016, 237, 107–118. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, Y.; Cui, X.; Brennan, M.J.; Almeida, F.C.; Yang, J. Adaptive Phase Transform Method for Pipeline Leakage Detection. Sensors 2019, 19, 310. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Ma, Y.; Cheng, X.; Yang, J. Application of the differentiation process into the correlation-based leak detection in urban pipeline networks. Mech. Syst. Signal Process. 2018, 112, 251–264. [Google Scholar] [CrossRef]
- Ji, H.; Cui, X.; Gao, Y.; Ge, X. 3-D Ultrasonic Localization of Transformer Patrol Robot Based on EMD and PHAT-β Algorithms. IEEE Trans. Instrum. Meas. 2021, 70, 9004810. [Google Scholar] [CrossRef]
- Cui, X.; Gao, Y.; Ma, Y.; Liu, Y.; Jin, B. Variable Step Normalized LMS Adaptive Filter for Leak Localization in Water-Filled Plastic Pipes. IEEE Trans. Instrum. Meas. 2022, 71, 9600511. [Google Scholar] [CrossRef]
- Kong, Q.; Jiang, G.; Liu, Y.; Sun, J. Location of the Leakage From a Simulated Water-Cooling Wall Tube Based on Acoustic Method and an Artificial Neural Network. IEEE Trans. Instrum. Meas. 2021, 70, 4502618. [Google Scholar] [CrossRef]
- Jin, Y.; Shan, C.; Wu, Y.; Xia, Y.; Zhang, Y.; Zeng, L. Fault Diagnosis of Hydraulic Seal Wear and Internal Leakage Using Wavelets and Wavelet Neural Network. IEEE Trans. Instrum. Meas. 2019, 68, 1026–1034. [Google Scholar] [CrossRef]
- Guo, C.; Wen, Y.; Li, P.; Wen, J. Adaptive noise cancellation based on EMD in water-supply pipeline leak detection. Measurement 2016, 79, 188–197. [Google Scholar] [CrossRef]
- Han, X.; Cao, W.; Cui, X.; Gao, Y.; Liu, F. Plastic Pipeline Leak Localization Based on Wavelet Packet Decomposition and Higher Order Cumulants. IEEE Trans. Instrum. Meas. 2022, 71, 3520911. [Google Scholar] [CrossRef]
- Meng, Q.; Lang, X.; Lin, M.; Cai, Z.; Zheng, H.; Song, H.; Liu, W. Leak Localization of Gas Pipeline Based on the Combination of EEMD and Cross-Spectrum Analysis. IEEE Trans. Instrum. Meas. 2021, 71, 9501209. [Google Scholar] [CrossRef]
Method | Peak | Real Time (ms) | Time Delay Estimation | Error (%) | Mean Error (%) |
---|---|---|---|---|---|
BCC | Peak 1 | 2.6 | 2.69 | 3.46 | 21.54 |
Peak 2 | 2.56 | 1.54 | |||
Peak 3 | 2.44 | 6.15 | |||
Peak 4 | 2.32 | 10.77 | |||
Peak 5 | 0.37 | 85.77 | |||
S-PHAT | Peak 1 | 2.44 | 6.15 | 6.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Gao, Y.; Li, H.; Huang, S.; Chen, M.; Wang, B. Pipeline Leakage Detection Based on Secondary Phase Transform Cross-Correlation. Sensors 2023, 23, 1572. https://doi.org/10.3390/s23031572
Liang H, Gao Y, Li H, Huang S, Chen M, Wang B. Pipeline Leakage Detection Based on Secondary Phase Transform Cross-Correlation. Sensors. 2023; 23(3):1572. https://doi.org/10.3390/s23031572
Chicago/Turabian StyleLiang, Hetao, Yan Gao, Haibin Li, Siyuan Huang, Minghui Chen, and Baomin Wang. 2023. "Pipeline Leakage Detection Based on Secondary Phase Transform Cross-Correlation" Sensors 23, no. 3: 1572. https://doi.org/10.3390/s23031572
APA StyleLiang, H., Gao, Y., Li, H., Huang, S., Chen, M., & Wang, B. (2023). Pipeline Leakage Detection Based on Secondary Phase Transform Cross-Correlation. Sensors, 23(3), 1572. https://doi.org/10.3390/s23031572