Antennas for Licensed Shared Access in 5G Communications with LTE Mid- and High-Band Coverage
Abstract
:1. Introduction
2. A Planar Antenna for LSA Bands
2.1. Antenna Configuration
2.2. Design Procedure and Working Principle
2.3. Radiation Performance
3. Dual-Band Antenna for LSA Bands and LTE Mid and High Bands
3.1. Antenna Configuration
3.2. Design Procedure and Working Principle
3.3. Radiation Performance
4. Wideband Antenna for LSA Bands and LTE Mid and High Bands
4.1. Antenna Configuration
4.2. Design Procedure and Working Principle
5. Measured and Predicted Results
5.1. Reflection Coefficient
5.2. Radiation Performance
5.3. Comparison of Antennas
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- John, D.M.; Vincent, S.; Pathan, S.; Kumar, P.; Ali, T. Flexible Antennas for a Sub-6 GHz 5G Band: A Comprehensive Review. Sensors 2022, 22, 7615. [Google Scholar] [CrossRef]
- Kiani, S.H.; Marey, M.; SAVCI, H.e.; Mostafa, H.; Rafique, U.; Khan, M.A. Dual-Band Multiple-Element MIMO Antenna System for Next-Generation Smartphones. Appl. Sci. 2022, 12, 9694. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, L.X.; Wang, P.; Lu, H. Compact 8 × 8 MIMO Antenna Design for 5G Terminals. Electronics 2022, 11, 3245. [Google Scholar] [CrossRef]
- Patel, U.; Upadhyaya, T. Four-Port Dual-Band Multiple-Input Multiple-Output Dielectric Resonator Antenna for Sub-6 GHz 5G Communication Applications. Micromachines 2022, 13, 2022. [Google Scholar] [CrossRef] [PubMed]
- Saleh, S.; Jamaluddin, M.H.; Razzaz, F.; Saeed, S.M. Compact 5G Nonuniform Transmission Line Interdigital Bandpass Filter for 5G/UWB Reconfigurable Antenna. Micromachines 2022, 13, 2013. [Google Scholar] [CrossRef] [PubMed]
- Przesmycki, R.; Bugaj, M. Crescent Microstrip Antenna for LTE-U and 5G Systems. Electronics 2022, 11, 1201. [Google Scholar] [CrossRef]
- Mustonen, M.; Matinmikko, M.; Palola, M.; Yrjölä, S.; Horneman, K. An evolution toward cognitive cellular systems: Licensed shared access for network optimization. IEEE Commun. Mag. 2015, 53, 68–74. [Google Scholar] [CrossRef]
- Matinmikko, M.; Palola, M.; Saarnisaari, H.; Heikkilä, M.; Prokkola, J.; Kippola, T.; Hänninen, T.; Jokinen, M.; Yrjölä, S. Cognitive Radio Trial Environment: First Live Authorized Shared Access-Based Spectrum-Sharing Demonstration. IEEE Veh. Technol. Mag. 2013, 8, 30–37. [Google Scholar] [CrossRef]
- Hasan, N.U.; Ejaz, W.; Ejaz, N.; Kim, H.S.; Anpalagan, A.; Jo, M. Network Selection and Channel Allocation for Spectrum Sharing in 5G Heterogeneous Networks. IEEE Access 2016, 4, 980–992. [Google Scholar] [CrossRef]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- DigitalEurope. Releasing New Radio Spectrum Bands for Mobile Broadband in Europe 2014. Available online: www.digitaleurope.org (accessed on 3 January 2023).
- ETSI. Mobile Broadband Services in the 2300–2400 MHz Frequency Band under Licensed Shared Access Regime 2013. ETSI RRS System Reference Document, TR 103 113, V. 1.1.1. July 2013. Available online: https://www.etsi.org/deliver/etsi_tr/103100_103199/103113/01.01.01_60/tr_103113v010101p.pdf (accessed on 3 January 2023).
- Molisch, A.F. 3GPP Long Term Evolution. In Wireless Communications; Wiley-IEEE Press: Hoboken, NJ, USA, 2011; pp. 665–698. [Google Scholar] [CrossRef]
- Wu, D.; Cheung, S.W.; Yuk, T.I. A Compact and Low-Profile Loop Antenna With Multiband Operation for Ultra-Thin Smartphones. IEEE Trans. Antennas Propag. 2015, 63, 2745–2750. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, A. LTE Antenna Design for Mobile Phone With Metal Frame. IEEE Antennas Wireless Propag. Lett. 2016, 15, 1462–1465. [Google Scholar] [CrossRef]
- Tang, R.; Du, Z. Wideband Monopole without Lumped Elements for Octa-Band Narrow-Frame LTE Smart Phone. IEEE Antennas Wireless Propag. Lett. 2016. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Z. Wideband Monopole Antenna With Less Nonground Portion For Octa-Band WWAN/LTE Mobile Phones. IEEE Trans. Antennas Propag. 2016, 64, 383–388. [Google Scholar] [CrossRef]
- Wong, K.L.; Tsai, C.Y. IFA-Based Metal-Frame Antenna Without Ground Clearance for the LTE/WWAN Operation in the Metal-Casing Tablet Computer. IEEE Trans. Antennas Propag. 2016, 64, 53–60. [Google Scholar] [CrossRef]
- Affandi, A.; Azim, R.; Alam, M.M.; Islam, M.T. A Low-Profile Wideband Antenna for WWAN/LTE Applications. Electronics 2020, 9, 393. [Google Scholar] [CrossRef]
- Huang, D.; Du, Z.; Wang, Y. Compact Antenna for 4G/5G Metal Frame Mobile Phone Applications Using a Tuning Line. Electronics 2018, 7, 439. [Google Scholar] [CrossRef]
- Huang, D.; Du, Z.; Wang, Y. Eight-Band Antenna for Full-Screen Metal Frame LTE Mobile Phones. IEEE Trans. Antennas Propag. 2019, 67, 1527–1534. [Google Scholar] [CrossRef]
- Wang, S.; Du, Z. A Dual-Antenna System for LTE/WWAN/WLAN/WiMAX Smartphone Applications. IEEE Antennas Wireless Propag. Lett. 2015, 14, 1443–1446. [Google Scholar] [CrossRef]
- Wong, K.L.; Huang, C.Y. Triple-Wideband Open-Slot Antenna for the LTE Metal-Framed Tablet device. IEEE Trans. Antennas Propag. 2015, 63, 5966–5971. [Google Scholar] [CrossRef]
- Wong, K.L.; Chen, Y.C. Small-Size Hybrid Loop/Open-Slot Antenna for the LTE Smartphone. IEEE Trans. Antennas Propag. 2015, 63, 5837–5841. [Google Scholar] [CrossRef]
- Xu, H.; Wang, H.; Gao, S.; Zhou, H.; Huang, Y.; Xu, Q.; Cheng, Y. A Compact and Low-Profile Loop Antenna With Six Resonant Modes for LTE Smartphone. IEEE Trans. Antennas Propag. 2016, 64, 3743–3751. [Google Scholar] [CrossRef]
- Wong, K.L.; Liao, Z.G. Passive Reconfigurable Triple-Wideband Antenna for LTE Tablet Computer. IEEE Trans. Antennas Propag. 2015, 63, 901–908. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Y.; Wang, H.; Zhou, H.; Liu, K. A Reconfigurable Metal Rim Antenna With Smallest Clearance for Smartphone Applications. IEEE Access 2022, 10, 112250–112260. [Google Scholar] [CrossRef]
- Ahmad, A.; Tahir, F.A.; Khan, F. A planar GPS/GLONASS/LTE/WWAN antenna for ultra-slim smartphones. In Proceedings of the 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 2973–2975. [Google Scholar] [CrossRef]
- Current Situation of Spectrum Use in Japan; Telecommunications Bureau of the Ministry of Internal Affairs and Communications: Tokyo, Japan, 2016.
- U.S. Frequency Allocation Chart as of January 2016; National Telecommunications and Information Administration: Washington, DC, USA, 2016. Available online: https://www.nist.gov/image/january2016spectrumwallchartpng (accessed on 3 January 2023).
- Lee, J.; Liu, Y.; Kim, H. Mobile Antenna Using Multi-Resonance Feed Structure for Wideband Operation. IEEE Trans. Antennas Propag. 2014, 62, 5851–5855. [Google Scholar] [CrossRef]
- Park, B.Y.; Jeong, M.H.; Park, S.O. A Magneto-Dielectric Handset Antenna for LTE/WWAN/GPS Applications. IEEE Antennas Wireless Propag. Lett. 2014, 13, 1482–1485. [Google Scholar] [CrossRef]
- El-gendy, M.S. Multi-Broadband Microstrip Antenna for LTE Smartphone Applications. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 1529–1530. [Google Scholar] [CrossRef]
- Li, Y.N.; Chu, Q.X. Compact Eight-Band Monopole for LTE Mobile Phone. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–3. [Google Scholar] [CrossRef]
- ZHANG, X.; Liu, Y.; Cui, W.; Jia, Y. Small-Size coupled-fed loop antenna for the LTE Smartphone. In Proceedings of the 2019 International Symposium on Antennas and Propagation (ISAP), Xi’an, China, 27–30 October 2019; pp. 1–3. [Google Scholar]
Parameters | LSA Antenna | Dual-Band Antenna | Wideband Antenna |
---|---|---|---|
(Ant#1) | (Ant#2) | (Ant#3) | |
Physical Area (mm) | 600 | 585 | 510 |
Bandwidth (GHz) | 1.38–2.55 | 1.39–2.84, 3.27–3.97 | 1.37–4 |
Efficiency (%) | 66–89 | 62–90 (M), 66–88 (H) | 66–96 (M), 79–94 (H) |
Gain (dBi) | 1.3–3.6 | 1.4–3.4 (M), 4.2–6.1 (H) | 1.6–2.9 (M), 4.2–5.6 (H) |
Nulls in Rad. Pat. | In x–y plane | In x–y plane (H) | - |
Ref. | Efficiency * (%) | Bandwidth (GHz) | Antenna Height | Area | Substrate (Thickness) |
---|---|---|---|---|---|
[16] | 64–83 (M) | 1.68–2.74 | 5 | 3360 | FR4 (0.8 mm) |
[17] | 50–73 (M) | 1.63–2.74 | 5.8 | 2240 | FR4 (0.8 mm) |
[18] | 65–83 (M) | 1.71–2.69 | 7 | 567 | FR4 (0.4 mm) |
[22] | 50–93 (M), 53–73 (H) | 1.69–4.02 | 7 | 800 | FR4 (0.8 mm) |
[23] | 48–84 (M), 62–91 (H) | 1.71–2.69, 3.4–3.8 | 6 | 2400 | FR4 (0.8 mm) |
[24] | 60–75 (M), 78–91 (H) | 1.71–3.85 | 5 | 560 | FR4 (0.8 mm) |
[25] | 59–90 (M), 50–85 (H) | 1.71–3.02, 3.37–3.9 | 5 | 1125 | FR4 (1.6 mm) |
[27] | >50 (M and H) | 1.7–2.9, 3.4–3.8 | 5 | 2812 | FR4 (0.8 mm) |
[31] | 58–77 (M) | 1.66–2.77 | 3 | 550 | FR4 (1 mm) |
[32] | 57–87 (M) | 1.6–2.7 | 4 | 525 | FR4 (1 mm) |
[33] | Not given | 1.48–2.176, 2.28–2.775, | 0.8 | 1020 | FR4 (0.8 mm) |
2.97–4.98, 5.125–6 | |||||
[34] | 40–66 (M) | 1.71–2.85 | 0.8 | 874 | FR4 (0.8 mm) |
[35] | 88–95 (M) (rad) | 1.67–2.87 | 6 | 560 | FR4 (0.8 mm) |
Ant#3 | 66–96 (M), 79–94 (H) | 1.37–4 | 4 | 510 | FR4 (0.8 mm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morshed, K.M.; Karmokar, D.K.; Esselle, K.P. Antennas for Licensed Shared Access in 5G Communications with LTE Mid- and High-Band Coverage. Sensors 2023, 23, 2095. https://doi.org/10.3390/s23042095
Morshed KM, Karmokar DK, Esselle KP. Antennas for Licensed Shared Access in 5G Communications with LTE Mid- and High-Band Coverage. Sensors. 2023; 23(4):2095. https://doi.org/10.3390/s23042095
Chicago/Turabian StyleMorshed, Khaled M., Debabrata K. Karmokar, and Karu P. Esselle. 2023. "Antennas for Licensed Shared Access in 5G Communications with LTE Mid- and High-Band Coverage" Sensors 23, no. 4: 2095. https://doi.org/10.3390/s23042095
APA StyleMorshed, K. M., Karmokar, D. K., & Esselle, K. P. (2023). Antennas for Licensed Shared Access in 5G Communications with LTE Mid- and High-Band Coverage. Sensors, 23(4), 2095. https://doi.org/10.3390/s23042095