Flexible Film Bulk Acoustic Resonator Based on Low-Porosity β-Phase P(VDF-TrFE) Film for Human Vital Signs Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Low-Porosity β-Phase P(VDF-TrFE) Film
2.2. Design of the P(VDF-TrFE) FBAR Pressure Sensor
2.3. Fabrication of the P(VDF-TrFE) FBAR Pressure Sensor
2.4. Characterization Setup
3. Results and Discussion
3.1. Characterization of the P(VDF-TrFE) Films
3.1.1. Morphological Features
3.1.2. Crystalline Phases and Degree of Crystallinity
3.1.3. Electrical and Piezoelectric Properties
3.2. Device Characterization and Testing
3.2.1. Electrical Characterization of the P(VDF-TrFE) FBAR
3.2.2. Pressure Sensing Characteristics of the P(VDF-TrFE) FBAR
3.2.3. Heart Rate and Breathing Monitoring
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, Y.J.; Yu, L.T.; Yeo, J.C.; Lim, C.T. Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability. Adv. Mater. 2020, 32, 31. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.L.; Jin, H.; Wang, X.Z.; Dong, S.R.; Chen, G.H.; Luo, J.K.; Deen, M.J.; Qi, B.S. UV sensing using film bulk acoustic resonators based on Au/n-ZnO/piezoelectric-ZnO/Al structure. Sci. Rep. 2015, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Xuan, W.P.; Chen, J.; Wu, T.; Chen, J.K.; Huang, X.W.; Dong, S.R.; Wang, X.Z.; Jin, H.; Luo, J.K. Bulk acoustic wave resonator based wireless and passive pressure sensor. Vacuum 2020, 178, 6. [Google Scholar] [CrossRef]
- Gu, C.C.; Xuan, W.P.; Dong, S.R.; Wang, X.Z.; Li, H.L.; Yu, L.Y.; Luo, J.K. Temperature calibrated on-chip dual-mode film bulk acoustic resonator pressure sensor with a sealed back-trench cavity. J. Micromech. Microeng. 2018, 28, 10. [Google Scholar] [CrossRef]
- Xuan, W.P.; Cole, M.; Gardner, J.W.; Thomas, S.; Villa-Lopez, F.H.; Wang, X.Z.; Dong, S.R.; Luo, J.K. A film bulk acoustic resonator oscillator based humidity sensor with graphene oxide as the sensitive layer. J. Micromech. Microeng. 2017, 27, 8. [Google Scholar] [CrossRef]
- Gao, F.; Xuan, W.P.; Bermak, A.; Boussaid, F.; Tsui, C.Y.; Luo, J.K. Dual transduction on a single sensor for gas identification. Sens. Actuator B-Chem. 2019, 278, 21–27. [Google Scholar] [CrossRef]
- Wu, T.; Jin, H.; Dong, S.R.; Xuan, W.P.; Xu, H.S.; Lu, L.H.; Fang, Z.J.; Huang, S.Y.; Tao, X.; Shi, L.; et al. A Flexible Film Bulk Acoustic Resonator Based on beta-Phase Polyvinylidene Fluoride Polymer. Sensors 2020, 20, 11. [Google Scholar]
- Sharma, S.; Chhetry, A.; Sharifuzzaman, M.; Yoon, H.; Park, J.Y. Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition. ACS Appl. Mater. Interfaces 2020, 12, 22212–22224. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Wu, P.M.; Lee, S.; Gorton, A.; Schulz, M.J.; Ahn, C.H. Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J. Microelectromech. Syst. 2008, 17, 334–341. [Google Scholar]
- Zhou, Z.J.; Li, J.L.; Xia, W.M.; Zhu, X.; Sun, T.; Cao, C.J.; Zhang, L. Enhanced piezoelectric and acoustic performances of poly (vinylidene fluoride-trifluoroethylene) films for hydroacoustic applications. Phys. Chem. Chem. Phys. 2020, 22, 5711–5722. [Google Scholar] [CrossRef] [PubMed]
- Gijsenbergh, P.; Halbach, A.; Jeong, Y.; Torri, G.B.; Billen, M.; Demi, L.; Huang, C.H.; Cheyns, D.; Rottenberg, X.; Rochus, V. Characterization of polymer-based piezoelectric micromachined ultrasound transducers for short-range gesture recognition applications. J. Micromech. Microeng. 2019, 29, 10. [Google Scholar] [CrossRef]
- Marat-Mendes, R.; Dias, C.J.; Marat-Mendes, J.N. Measurement of the angular acceleration using a PVDF and a piezo-composite. Sens. Actuator A-Phys. 1999, 76, 310–313. [Google Scholar] [CrossRef]
- Shi, L.; Jin, H.; Dong, S.R.; Huang, S.Y.; Kuang, H.Z.; Xu, H.S.; Chen, J.K.; Xuan, W.P.; Zhang, S.M.; Li, S.J.; et al. High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting. Nano Energy 2021, 80, 11. [Google Scholar] [CrossRef]
- Fang, Z.J.; Jin, H.; Dong, S.R.; Lu, L.H.; Xuan, W.P.; Luo, J.K. Ultrathin single-crystalline LiNbO(3)film bulk acoustic resonator for 5G communication. Electron. Lett. 2020, 56, 1142–1143. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Kumar, A.; Kour, P.; Pandey, R.; Kumar, P.; Kar, M.; Sinha, A.N. Piezoelectric and mechanical properties of PVDF-PZT composite. Ferroelectrics 2020, 558, 59–66. [Google Scholar] [CrossRef]
- Chen, X.L.; Li, X.M.; Shao, J.Y.; An, N.L.; Tian, H.M.; Wang, C.; Han, T.Y.; Wang, L.; Lu, B.H. High-Performance Piezoelectric Nanogenerators with Imprinted P(VDF-TrFE)/BaTiO3 Nanocomposite Micropillars for Self-Powered Flexible Sensors. Small 2017, 13, 12. [Google Scholar] [CrossRef]
- Dodds, J.S.; Meyers, F.N.; Loh, K.J. Piezoelectric Characterization of PVDF-TrFE Thin Films Enhanced With ZnO Nanoparticles. IEEE Sens. J. 2012, 12, 1889–1890. [Google Scholar] [CrossRef]
- Tang, C.W.; Li, B.; Sun, L.L.; Lively, B.; Zhong, W.H. The effects of nanofillers, stretching and recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites. Eur. Polym. J. 2012, 48, 1062–1072. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, T.; Wang, C.; Xiao, Y.J.; Jing, P.P.; Cui, Y.F.; Pu, Y.P. Poly(vinylidene fluoride) Flexible Nanocomposite Films with Dopamine-Coated Giant Dielectric Ceramic Nanopowders, Ba(Fe0.5Ta0.5)O-3, for High Energy-Storage Density at Low Electric Field. ACS Appl. Mater. Interfaces 2017, 9, 29130–29139. [Google Scholar] [CrossRef]
- Soin, N.; Boyer, D.; Prashanthi, K.; Sharma, S.; Narasimulu, A.A.; Luo, J.; Shah, T.H.; Siores, E.; Thundat, T. Exclusive self-aligned beta-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion. Chem. Commun. 2015, 51, 8257–8260. [Google Scholar] [CrossRef]
- Lau, K.; Liu, Y.; Chen, H.; Withers, R.L. Effect of Annealing Temperature on the Morphology and Piezoresponse Characterisation of Poly(vinylidene fluoride-trifluoroethylene) Films via Scanning Probe Microscopy. Adv. Condens. Matter Phys. 2013, 2013, 5. [Google Scholar] [CrossRef]
- Yang, C.R.; Wang, L.J.; Tseng, S.F. Arrayed porous polydimethylsiloxane/barium titanate microstructures for high-sensitivity flexible capacitive pressure sensors. Ceram. Int. 2022, 48, 13144–13153. [Google Scholar] [CrossRef]
- Jing, Z.; Zhang, Q.; Cheng, Y.Q.; Ji, C.; Zhao, D.; Liu, Y.; Jia, W.D.; Pan, S.R.; Sang, S.B. Highly sensitive, reliable and flexible piezoresistive pressure sensors based on graphene-PDMS @ sponge. J. Micromech. Microeng. 2020, 30, 8. [Google Scholar] [CrossRef]
- Chen, G.H.; Zhao, X.R.; Wang, X.Z.; Jin, H.; Li, S.J.; Dong, S.R.; Flewitt, A.J.; Milne, W.I.; Luo, J.K. Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer. Sci. Rep. 2015, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, R.; Froemel, J.; Tanaka, S. Development of PVDF-TrFE/SiO2 composite film bulk acoustic resonator. Sens. Actuator A-Phys. 2018, 284, 120–128. [Google Scholar] [CrossRef]
- Guth, F.; Arki, P.; Loher, T.; Ostmann, A.; Joseph, Y. In Proceedings of the Electrochemical Sensors Based on Printed Circuit Board Technologies, 30th Eurosensors Conference, Budapest, Hungary, 4–7 September 2016; Elsevier Science Bv: Budapest, Hungary, 2016; pp 452–455.
- Shamkhalichenar, H.; Bueche, C.J.; Choi, J.W. Printed Circuit Board (PCB) Technology for Electrochemical Sensors and Sensing Platforms. Biosens.-Basel 2020, 10, 16. [Google Scholar] [CrossRef]
- Metters, J.P.; Kadara, R.O.; Banks, C.E. New directions in screen printed electroanalytical sensors: An overview of recent developments. Analyst 2011, 136, 1067–1076. [Google Scholar] [CrossRef]
- Yang, W.; Li, N.W.; Zhao, S.Y.; Yuan, Z.Q.; Wang, J.N.; Du, X.Y.; Wang, B.; Cao, R.; Li, X.Y.; Xu, W.H.; et al. A Breathable and Screen-Printed Pressure Sensor Based on Nanofiber Membranes for Electronic Skins. Adv. Mater. Technol. 2018, 3, 7. [Google Scholar] [CrossRef]
- Goh, G.L.; Tay, M.F.; Lee, J.M.; Ho, J.S.; Sim, L.N.; Yeong, W.Y.; Chong, T.H. Potential of Printed Electrodes for Electrochemical Impedance Spectroscopy (EIS): Toward Membrane Fouling Detection. Adv. Electron. Mater. 2021, 7, 23. [Google Scholar] [CrossRef]
- Liu, C.Y.; Huang, N.G.; Xu, F.; Tong, J.D.; Chen, Z.W.; Gui, X.C.; Fu, Y.L.; Lao, C.S. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin. Polymers 2018, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Prabu, A.A.; Kim, K.J. Annealing effect upon chain orientation, crystalline morphology, and polarizability of ultra-thin P(VDF-TrFE) film for nonvolatile polymer memory device. Polymer 2010, 51, 6319–6333. [Google Scholar] [CrossRef]
- Cardoso, V.F.; Lopes, A.C.; Botelho, G.; Lanceros-Mendez, S. Poly (vinylidene fluoride-trifluoroethylene) Porous Films: Tailoring Microstructure and Physical Properties by Solvent Casting Strategies. Soft Mater. 2015, 13, 243–253. [Google Scholar] [CrossRef]
- Teyssedre, G.; Grimau, M.; Bernes, A.; Martinez, J.J.; Lacabanne, C. Alpha-Relaxation Retardation Mode in Semicrystalline Polymers With Flexible Chains. Polymer 1994, 35, 4397–4403. [Google Scholar] [CrossRef]
- Ducrot, P.H.; Dufour, I.; Ayela, C. Optimization Of PVDF-TrFE Processing Conditions For The Fabrication Of Organic MEMS Resonators. Sci. Rep. 2016, 6, 7. [Google Scholar] [CrossRef]
- Poulsen, M.; Ducharme, S. Why Ferroelectric Polyvinylidene Fluoride is Special. IEEE Trns. Dielectr. Electr. Insul. 2010, 17, 1028–1035. [Google Scholar] [CrossRef]
- Guan, Z.; Li, Y.K.; Zhao, Y.F.; Peng, Y.; Han, G.Q.; Zhong, N.; Xiang, P.H.; Chu, J.H.; Duan, C.G. Mechanical Polarization Switching in Hf0.5Zr0.5O2 Thin Film. Nano Lett. 2022, 22, 4792–4799. [Google Scholar] [CrossRef]
- Shyu, K.K.; Chiu, L.J.; Lee, P.L.; Tung, T.H.; Yang, S.H. Detection of Breathing and Heart Rates in UWB Radar Sensor Data Using FVPIEF-Based Two-Layer EEMD. IEEE Sens. J. 2019, 19, 774–784. [Google Scholar] [CrossRef]
- Chiu, Y.Y.; Lin, W.Y.; Wang, H.Y.; Huang, S.B.; Wu, M.H. Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring. Sens. Actuator A-Phys. 2013, 189, 328–334. [Google Scholar] [CrossRef]
- Yi, F.; Zhang, Z.; Kang, Z.; Liao, Q.L.; Zhang, Y. Recent Advances in Triboelectric Nanogenerator-Based Health Monitoring. Adv. Funct. Mater. 2019, 29, 16. [Google Scholar] [CrossRef]
Sensor Type | Sensitivity | Linearity | Response Time | Monitoring Modes | Stretcha-bility | Cost | Temperature Drift |
---|---|---|---|---|---|---|---|
Piezoresistive Pressure [23] | 0.075 kPa−1 )/kPa | Low | 120 ms | Heartbeat | - | High | Medium |
Piezoelectric Strain [39] | 0.97 mV/με | - | - | Heartbeat and breath | 35% | Low | High |
Triboelectric Pressure [40] | 18.98 V/kPa | Low | - | Heartbeat and breath | - | Med-ium | - |
Capacitive pressure [22] | 7.847 kPa−1 )/kPa | Medium | 20 ms | Pulse | - | High | Low |
This work | 0.004 dB/kPa | High | 25 ms | Heartbeat and breath | 15% | Low | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Gao, F.; He, X.; Jin, H.; Dong, S.; Cao, Z.; Luo, J. Flexible Film Bulk Acoustic Resonator Based on Low-Porosity β-Phase P(VDF-TrFE) Film for Human Vital Signs Monitoring. Sensors 2023, 23, 2136. https://doi.org/10.3390/s23042136
Yu Z, Gao F, He X, Jin H, Dong S, Cao Z, Luo J. Flexible Film Bulk Acoustic Resonator Based on Low-Porosity β-Phase P(VDF-TrFE) Film for Human Vital Signs Monitoring. Sensors. 2023; 23(4):2136. https://doi.org/10.3390/s23042136
Chicago/Turabian StyleYu, Zhentao, Feng Gao, Xiangyu He, Hao Jin, Shurong Dong, Zhen Cao, and Jikui Luo. 2023. "Flexible Film Bulk Acoustic Resonator Based on Low-Porosity β-Phase P(VDF-TrFE) Film for Human Vital Signs Monitoring" Sensors 23, no. 4: 2136. https://doi.org/10.3390/s23042136
APA StyleYu, Z., Gao, F., He, X., Jin, H., Dong, S., Cao, Z., & Luo, J. (2023). Flexible Film Bulk Acoustic Resonator Based on Low-Porosity β-Phase P(VDF-TrFE) Film for Human Vital Signs Monitoring. Sensors, 23(4), 2136. https://doi.org/10.3390/s23042136