Surface Environment and Energy Density Effects on the Detection and Disinfection of Microorganisms Using a Portable Instrument
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Portable Disinfection Unit
2.3. Detection Procedures
2.4. Disinfection Procedures
3. Results
3.1. Contamination Detection
3.2. Disinfection in the Liquid Sample
3.3. Disinfection in Agar Media
3.4. Disinfection in the Solid Surface
3.5. Comparison of the Log Reduction Values
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhunia, A.K. One Day to One Hour: How Quickly Can Foodborne Pathogens Be Detected? Future Microbiol. 2014, 9, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne Illness Acquired in the United States—Major Pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Jarquin, R.; Hanning, I.; Ahn, S.; Ricke, S.C. Development of Rapid Detection and Genetic Characterization of Salmonella in Poultry Breeder Feeds. Sensors 2009, 9, 5308–5323. [Google Scholar] [CrossRef] [PubMed]
- Boukharouba, A.; González, A.; García-Ferrús, M.; Ferrús, M.A.; Botella, S. Simultaneous Detection of Four Main Foodborne Pathogens in Ready-to-Eat Food by Using a Simple and Rapid Multiplex PCR (MPCR) Assay. Int. J. Environ. Res. Public Health 2022, 19, 1031. [Google Scholar] [CrossRef]
- Reese, K.R.; Elkins, K.M. Simultaneous Detection of Foodborne Pathogens Using a Real-Time PCR Triplex High-Resolution Melt Assay. Appl. Microbiol. 2022, 2, 453–459. [Google Scholar] [CrossRef]
- Xu, K.; Huang, J.; Ye, Z.; Ying, Y.; Li, Y. Recent Development of Nano-Materials Used in DNA Biosensors. Sensors 2009, 9, 5534–5557. [Google Scholar] [CrossRef]
- Bansal, S.; Singh, A.; Mangal, M.; Mangal, A.K.; Kumar, S. Food Adulteration: Sources, Health Risks, and Detection Methods. Crit. Rev. Food Sci. Nutr. 2017, 57, 1174–1189. [Google Scholar] [CrossRef]
- Doh, I.-J.; Sturgis, J.; Sarria Zuniga, D.V.; Pruitt, R.E.; Robinson, J.P.; Bae, E. Generalized Spectral Light Scatter Models of Diverse Bacterial Colony Morphologies. J. Biophotonics 2019, 12, e201900149. [Google Scholar] [CrossRef]
- Tang, Y.; Kim, H.; Singh, A.K.; Aroonnual, A.; Bae, E.; Rajwa, B.; Fratamico, P.M.; Bhunia, A.K. Light Scattering Sensor for Direct Identification of Colonies of Escherichia Coli Serogroups O26, O45, O103, O111, O121, O145 and O157. PLoS ONE 2014, 9, e105272. [Google Scholar] [CrossRef]
- Doh, I.-J.; Dowden, B.; Patsekin, V.; Rajwa, B.; Robinson, J.P.; Bae, E. Development of a Smartphone-Integrated Reflective Scatterometer for Bacterial Identification. Sensors 2022, 22, 646. [Google Scholar] [CrossRef]
- Gondhalekar, C.; Biela, E.; Rajwa, B.; Bae, E.; Patsekin, V.; Sturgis, J.; Reynolds, C.; Doh, I.-J.; Diwakar, P.; Stanker, L.; et al. Detection of E. Coli Labeled with Metal-Conjugated Antibodies Using Lateral-Flow Assay and Laser-Induced Breakdown Spectroscopy. Anal. Bioanal. Chem. 2020, 412, 1291–1301. [Google Scholar] [CrossRef]
- Dzwolak, W. Assessment of HACCP Plans in Standardized Food Safety Management Systems – The Case of Small-Sized Polish Food Businesses. Food Control 2019, 106, 106716. [Google Scholar] [CrossRef]
- Baliyan, N.; Dhiman, S.; Dheeman, S.; Vishnoi, V.K.; Kumar, S.; Maheshwari, D.K. Bacteriophage Cocktails as Antibacterial Agents in Crop Protection. Environ. Sustain. 2022, 5, 376. [Google Scholar] [CrossRef]
- Fischetti, V.A. Bacteriophage Endolysins: A Novel Anti-Infective to Control Gram-Positive Pathogens. Int. J. Med. Microbiol. 2010, 300, 357–362. [Google Scholar] [CrossRef]
- Calle, A.; Fernandez, M.; Montoya, B.; Schmidt, M.; Thompson, J. UV-C LED Irradiation Reduces Salmonella on Chicken and Food Contact Surfaces. Foods 2021, 10, 1459. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Bhardwaj, S.K.; Khatri, M.; Kim, K.-H.; Bhardwaj, N. UVC Radiation for Food Safety: An Emerging Technology for the Microbial Disinfection of Food Products. Chem. Eng. J. 2021, 417, 128084. [Google Scholar] [CrossRef]
- Simpson, A.M.-A.; Mitch, W.A. Chlorine and Ozone Disinfection and Disinfection Byproducts in Postharvest Food Processing Facilities: A Review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1825–1867. [Google Scholar] [CrossRef]
- Freeman, S.; Kibler, K.; Lipsky, Z.; Jin, S.; German, G.K.; Ye, K. Systematic Evaluating and Modeling of SARS-CoV-2 UVC Disinfection. Sci. Rep. 2022, 12, 5869. [Google Scholar] [CrossRef]
- Lopez, C.A.; Pineda-Briseño, A.; Rivas, J.F.; Vazquez, P. GLAMP: Low-Cost Ozone and UV-C Light-Emitting Portable Device for Disinfection of Environments. In Proceedings of the 11th International Conference on Informatics, Environment, Energy and Applications, Xi’an, China, 4–6 March 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 25–29. [Google Scholar]
- Scott, R.; Joshi, L.T.; McGinn, C. Hospital Surface Disinfection Using Ultraviolet Germicidal Irradiation Technology: A Review. Healthc. Technol. Lett. 2022, 9, 25–33. [Google Scholar] [CrossRef]
- Mehta, I.; Hsueh, H.-Y.; Kourtzanidis, N.; Brylka, M.; Saeedi, S. Far-UVC Disinfection with Robotic Mobile Manipulator. In Proceedings of the 2022 International Symposium on Medical Robotics (ISMR), Atlanta, GA, USA, 13–15 April 2022. [Google Scholar]
- Nerandzic, M.M.; Cadnum, J.L.; Pultz, M.J.; Donskey, C.J. Evaluation of an Automated Ultraviolet Radiation Device for Decontamination of Clostridium Difficile and Other Healthcare-Associated Pathogens in Hospital Rooms. BMC Infect. Dis. 2010, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Guridi, A.; Sevillano, E.; de la Fuente, I.; Mateo, E.; Eraso, E.; Quindós, G. Disinfectant Activity of A Portable Ultraviolet C Equipment. Int. J. Environ. Res. Public. Health 2019, 16, 4747. [Google Scholar] [CrossRef]
- Health Quality Ontario. Portable Ultraviolet Light Surface-Disinfecting Devices for Prevention of Hospital-Acquired Infections: A Health Technology Assessment. Ont. Health Technol. Assess. Ser. 2018, 18, 1–73. [Google Scholar]
- Petersson, L.P.; Albrecht, U.-V.; Sedlacek, L.; Gemein, S.; Gebel, J.; Vonberg, R.-P. Portable UV Light as an Alternative for Decontamination. Am. J. Infect. Control 2014, 42, 1334–1336. [Google Scholar] [CrossRef] [PubMed]
- She, R.C.; Chen, D.; Pak, P.; Armani, D.K.; Schubert, A.; Armani, A.M.; Armani, A.M. Lightweight UV-C Disinfection System. Biomed. Opt. Express 2020, 11, 4326–4332. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, K.; Asai, S.; Inokuchi, S.; Miyachi, H. A Comparative Study of the Bactericidal Activity and Daily Disinfection Housekeeping Surfaces by a New Portable Pulsed UV Radiation Device. Curr. Microbiol. 2012, 64, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Sueker, M.; Stromsodt, K.; Gorji, H.T.; Vasefi, F.; Khan, N.; Schmit, T.; Varma, R.; Mackinnon, N.; Sokolov, S.; Akhbardeh, A.; et al. Handheld Multispectral Fluorescence Imaging System to Detect and Disinfect Surface Contamination. Sensors 2021, 21, 7222. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, H.; Sánchez Basurto, L.A.; Protasenko, V.V.; Bharadwaj, S.; Islam, M.; Moraru, C.I. Inactivation of Listeria and E. Coli by Deep-UV LED: Effect of Substrate Conditions on Inactivation Kinetics. Sci. Rep. 2020, 10, 3411. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Jubinville, E.; Rodríguez-López, M.I.; Trudel-Ferland, M.; Bouchard, S.; Jean, J. Inactivation of Foodborne Viruses by UV Light: A Review. Foods 2021, 10, 3141. [Google Scholar] [CrossRef]
- Smith, O.J.; Wicaksana, A.; Davidson, D.; Spratt, D.; Mosahebi, A. An Evaluation of the Bacteriostatic Effect of Platelet-Rich Plasma. Int. Wound J. 2021, 18, 448–456. [Google Scholar] [CrossRef]
- Jensen, D.A.; Friedrich, L.M.; Harris, L.J.; Danyluk, M.D.; Schaffner, D.W. Quantifying Transfer Rates of Salmonella and Escherichia Coli O157:H7 between Fresh-Cut Produce and Common Kitchen Surfaces. J. Food Prot. 2013, 76, 1530–1538. [Google Scholar] [CrossRef]
- Neely, A.N. A Survey of Gram-Negative Bacteria Survival on Hospital Fabrics and Plastics. J. Burn Care Rehabil. 2000, 21, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Gunter-Ward, D.M.; Patras, A.; Bhullar, S.M.; Kilonzo-Nthenge, A.; Pokharel, B.; Sasges, M. Efficacy of Ultraviolet (UV-C) Light in Reducing Foodborne Pathogens and Model Viruses in Skim Milk. J. Food Process. Preserv. 2018, 42, e13485. [Google Scholar] [CrossRef]
- Hice, S.A. Novel Approaches to the Low-Cost, Portable and Rapid Detection of Bacterial Pathogens in Foods and Food-Processing Environments. Ph.D. Thesis, Iowa State University, Iowa City, IA, USA, 2019. [Google Scholar]
- Chen, I.-H.; Horikawa, S.; Bryant, K.; Riggs, R.; Chin, B.A.; Barbaree, J.M. Bacterial Assessment of Phage Magnetoelastic Sensors for Salmonella Enterica Typhimurium Detection in Chicken Meat. Food Control 2017, 71, 273–278. [Google Scholar] [CrossRef]
- Sohn, M.; Himmelsbach, D.S.; Barton, F.E.; Fedorka-Cray, P.J. Fluorescence Spectroscopy for Rapid Detection and Classification of Bacterial Pathogens. Appl. Spectrosc. 2009, 63, 1251–1255. [Google Scholar] [CrossRef]
- Tebo, A.G.; Moeyaert, B.; Thauvin, M.; Carlon-Andres, I.; Böken, D.; Volovitch, M.; Padilla-Parra, S.; Dedecker, P.; Vriz, S.; Gautier, A. Orthogonal Fluorescent Chemogenetic Reporters for Multicolor Imaging. Nat. Chem. Biol. 2021, 17, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.H.; Na, W.H.; Yoo, J.C. A Miniaturized Fluorescence System via Total Internal Reflection, for Salmonella Detection by Isothermal Amplification. Sens. Lett. 2014, 12, 1076–1079. [Google Scholar] [CrossRef]
- Lapainis, T.; Scanlan, C.; Rubakhin, S.S.; Sweedler, J.V. A Multichannel Native Fluorescence Detection System for Capillary Electrophoretic Analysis of Neurotransmitters in Single Neurons. Anal. Bioanal. Chem. 2007, 387, 97–105. [Google Scholar] [CrossRef]
- Kim, D.-K.; Kang, D.-H. Inactivation Efficacy of a Sixteen UVC LED Module to Control Foodborne Pathogens on Selective Media and Sliced Deli Meat and Spinach Surfaces. LWT 2020, 130, 109422. [Google Scholar] [CrossRef]
- Brown, H.L. Microbial Growth. In Encyclopedia of Infection and Immunity; Elsevier: Amsterdam, The Netherlands, 2022; pp. 324–335. ISBN 978-0-323-90303-5. [Google Scholar]
- Gross, A.; Stangl, F.; Hoenes, K.; Sift, M.; Hessling, M. Improved Drinking Water Disinfection with UVC-LEDs for Escherichia Coli and Bacillus Subtilis Utilizing Quartz Tubes as Light Guide. Water 2015, 7, 4605–4621. [Google Scholar] [CrossRef]
- Kim, D.-K.; Kang, D.-H. UVC LED Irradiation Effectively Inactivates Aerosolized Viruses, Bacteria, and Fungi in a Chamber-Type Air Disinfection System. Appl. Environ. Microbiol. 2018, 84, e00944-18. [Google Scholar] [CrossRef]
- Xiao, Z.; Yu, S.; Li, Y.; Ruan, S.; Kong, L.B.; Huang, Q.; Huang, Z.; Zhou, K.; Su, H.; Yao, Z.; et al. Materials Development and Potential Applications of Transparent Ceramics: A Review. Mater. Sci. Eng. R. Rep. 2020, 139, 100518. [Google Scholar] [CrossRef]
- Szczawiński, J.; Tomaszewski, H.; Jackowska-Tracz, A.; Szczawińska, M.E. Effect of UV Radiation on Survival of Salmonella Enteritidis on the Surface of Ceramic Tiles Coated with TiO2. Bull. Vet. Inst. Pulawy 2010, 54, 479–483. [Google Scholar]
PBS | TSA Agar | Tile | |
---|---|---|---|
E. coli | –0.190 (0.11) | –0.297 (0.19) | –0.919 (0.10) |
K. pneumoniae | - | - | - |
S. enteritidis | –0.708 (0.12) | –0.679 (0.06) | –0.954 (0.07) |
L. innocua | –0.223 (0.06) | –0.111 (0.04) | –0.914 (0.04) |
S. aureus | –0.825 (0.06) | –0.746 (0.07) | - |
PBS | TSA Agar | Tile | |
---|---|---|---|
E. coli | –0.795 (0.35) | –0.891 (0.20) | –1.749 (0.25) |
K. pneumoniae | - | - | - |
S. enteritidis | –1.785 (0.15) | –1.900 (0.15) | - |
L. innocua | –2.690 (0.07) | –1.656 (0.23) | - |
S. aureus | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.; Dowden, B.; Doh, I.-J.; Rajwa, B.; Bae, E.; Robinson, J.P. Surface Environment and Energy Density Effects on the Detection and Disinfection of Microorganisms Using a Portable Instrument. Sensors 2023, 23, 2135. https://doi.org/10.3390/s23042135
Shin S, Dowden B, Doh I-J, Rajwa B, Bae E, Robinson JP. Surface Environment and Energy Density Effects on the Detection and Disinfection of Microorganisms Using a Portable Instrument. Sensors. 2023; 23(4):2135. https://doi.org/10.3390/s23042135
Chicago/Turabian StyleShin, Sungho, Brianna Dowden, Iyll-Joon Doh, Bartek Rajwa, Euiwon Bae, and J. Paul Robinson. 2023. "Surface Environment and Energy Density Effects on the Detection and Disinfection of Microorganisms Using a Portable Instrument" Sensors 23, no. 4: 2135. https://doi.org/10.3390/s23042135
APA StyleShin, S., Dowden, B., Doh, I. -J., Rajwa, B., Bae, E., & Robinson, J. P. (2023). Surface Environment and Energy Density Effects on the Detection and Disinfection of Microorganisms Using a Portable Instrument. Sensors, 23(4), 2135. https://doi.org/10.3390/s23042135