Monitoring Spatiotemporal Vegetation Response to Drought Using Remote Sensing Data
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Climate Factors
2.3. Satellite Image Processing
2.3.1. Image Preprocessing
2.3.2. Vegetation Coverage Index
2.3.3. Drought Index
2.4. Statistical Analysis
- (1)
- Simple linear regression:
- (2)
- Polynomial regression:
3. Results and Discussion
3.1. Spectral Characteristics
3.2. Results of Vegetation Monitoring by Using NDVI
3.3. Results of Drought Monitoring by Using NMDISoil
3.4. Monitoring Spatiotemporal Vegetation Response to Drought
3.4.1. The Aspatial Relationships
3.4.2. The Spatiotemporal Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, H.; Yan, C.; Tsunekawa, A.; Song, X.; Li, S.; Xie, J. Assessing vegetation dynamics in the Three-North Shelter Forest region of China using AVHRR NDVI data. Environ. Earth Sci. 2011, 64, 1011–1020. [Google Scholar] [CrossRef]
- Mirzaee, S.; Ghorbani-Dashtaki, S.; Kerry, R. Comparison of a spatial, spatial and hybrid methods for predicting inter-rill and rill soil sensitivity to erosion at the field scale. CATENA 2020, 188, 104439. [Google Scholar] [CrossRef]
- Poppiel, R.R.; Demattê, J.A.M.; Rosin, N.A.; Campos, L.R.; Tayebi, M.; Bonfatti, B.R.; Ayoubi, S.; Tajik, S.; Afshar, F.A.; Jafari, A.; et al. High resolution middle eastern soil attributes mapping via open data and cloud computing. Geoderma 2021, 385, 114890. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. central great plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef]
- Omuto, C.T. A new approach for using time-series remote sensing images to detect changes in vegetation cover and composition in drylands: A case study of eastern Kenya. Int. J. Remote Sens. 2011, 32, 6025–6045. [Google Scholar] [CrossRef]
- Yang, D.; Yi, G.H.; Zhang, T.B.; Li, J.; Qin, Y.; Wen, B.; Liu, Z. Spatiotemporal variation and driving factors of growing season NDVI in the Tibetan Plateau, China. Chin. J. Appl. Ecol. 2021, 32, 1361–1372. Available online: http://www.cjae.net/EN/10.13287/j.1001-9332.202104.014 (accessed on 13 November 2022).
- Lin, M.; Hou, L.; Qi, Z.; Wan, L. Impacts of climate change and human activities on vegetation NDVI in China’s Mu Us Sandy Land during 2000–2019. Ecol. Indic. 2022, 142, 109164. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J.; Hao, H. Forest fire detection using the normalized multi-band drought index (NMDI) with satellite measurements. Agric. For. Meteorol. 2008, 148, 1767–1776. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.W.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the vernal advancement and retrogradation (Greenwave effect) of natural vegetation. In NASA/GSFCT Type III Final Report; NASA: Washington, DC, USA, 1974. [Google Scholar]
- Duan, T.; Chapman, S.C.; Guo, Y.; Zheng, B. Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops Res. 2017, 210, 71–80. [Google Scholar] [CrossRef]
- Jia, W.; Liu, M.; Yang, Y.; He, H.; Zhu, X.; Yang, F.; Yin, C.; Xiang, W. Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches. Ecol. Indic. 2016, 60, 1031–1040. [Google Scholar] [CrossRef]
- Mirzaee, S.; Ghorbani-Dashtaki, S.; Mohammadi, J.; Asadi, H.; Asadzadeh, F. Spatial variability of soil organic matter using remote sensing data. CATENA 2016, 145, 118–127. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, S.; Zhang, Y.; Chen, Y.; Yu, L.; Liu, Y.; Liu, Y.; Cheng, H.; Liu, Y. Rapid identification of soil organic matter level via visible and near-infrared spectroscopy: Effects of two-dimensional correlation coefficient and extreme learning machine. Sci. Total Environ. 2018, 644, 1232–1243. [Google Scholar] [CrossRef]
- Zhu, K.; Sun, Z.; Zhao, F.; Yang, T.; Tian, Z.; Lai, J.; Zhu, W.; Long, B. Relating Hyperspectral Vegetation Indices with Soil Salinity at Different Depths for the Diagnosis of Winter Wheat Salt Stress. Remote Sens. 2021, 13, 250. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Yang, W.; Wang, L.; Wu, M.; Zhang, Q.; Han, W.; Khoi, D.N. The Relationship between NDVI and Climate Factors at Different Monthly Time Scales: A Case Study of Grasslands in Inner Mongolia, China (1982–2015). Sustainability 2019, 11, 7243. [Google Scholar] [CrossRef]
- Ghebrezgabher, M.G.; Yang, T.; Yang, X.; Sereke, T.E. Assessment of NDVI variations in responses to climate change in the Horn of Africa. EJRS 2020, 23, 249–261. [Google Scholar] [CrossRef]
- He, P.; Xu, L.; Liu, Z.; Jing, Y.; Zhu, W. Dynamics of NDVI and its influencing factors in the Chinese Loess Plateau during 2002–2018. Reg. Sustain. 2021, 2, 36–46. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Pan, Y.; Chen, Z.; Ren, Z. Assessment of candidate distributions for SPI/SPEI and sensitivity of drought to climatic variables in China. Int. J. Climatol. 2019, 39, 4392–4412. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. NMDI: A normalized multiband drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007, 34, 204–205. [Google Scholar] [CrossRef]
- Santos, R.O.; Delgado, R.C.; Vilanova, R.S.; de Santana, R.O.; de Andrade, C.F.; Teodoro, P.E.; Junior, C.A.S.; Capristo-Silva, G.F.; Lima, F. NMDI application for monitoring different vegetation covers in the Atlantic Forest biome, Brazil. Weather. Clim. Extrem. 2021, 33, 100329. [Google Scholar] [CrossRef]
- Tong, S.; Bao, Y.; Te, R.; Ma, Q.; Ha, S.; Lusi, A. Analysis of drought characteristics in Xilingol grassland of northern China based on SPEI and its impact on vegetation. Math. Probl. Eng. 2017, 2017, 5209173. [Google Scholar] [CrossRef]
- Choubin, B.; Rahmati, O.; Tahmasebipour, N.; Feizizadeh, B.; Pourghasemi, H.R. Application of fuzzy analytical network process model for analyzing the gully erosion susceptibility. In Natural Hazards Gis-Based Spatial Modeling Using Data Mining Techniques; Springer: Berlin/Heidelberg, Germany, 2019; pp. 105–125. [Google Scholar] [CrossRef]
- Zheng, K.; Wei, J.Z.; Pei, J.Y.; Cheng, H.; Zhang, X.L.; Huang, F.Q.; Li, F.M.; Ye, J.S. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Sci. Total Environ. 2019, 660, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.R.; Fulk, M. Long Sequence Time Series Evaluation Using Standardized Principal Components. Photogramm. Eng. Remote Sens. 1993, 59, 1307–1312. Available online: http://worldcat.org/issn/00991112 (accessed on 13 November 2022).
- Zhang, J.Y.; Ding, J.L.; Wu, P.F.; Tan, J.; Huang, S.; Teng, D.; Cao, X.; Wang, J.; Chen, W. Assessing arid inland lake watershed area and vegetation response to multiple temporal scales of drought across the Ebinur Lake Watershed. Sci. Rep. 2020, 10, 1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Band | Abbreviation | Spectral Range (μm) | Spatial Resolution (m) |
---|---|---|---|
Coastal/Aerosol | B1 | 0.43–0.45 | 30 |
Blue | B2 | 0.45–0.51 | 30 |
Green | B3 | 0.53–0.59 | 30 |
Red | B4 | 0.64–0.67 | 30 |
NIR | B5 | 0.85–0.88 | 30 |
SWIR1 | B6 | 1.57–1.65 | 30 |
SWIR2 | B7 | 2.11–2.29 | 30 |
Year | Min. | Max. | Mean | Median | Std. Dev | CV |
---|---|---|---|---|---|---|
2016 | 0.448 | 0.900 | 0.804 | 0.831 | 0.079 | 9.87 |
2017 | 0.382 | 0.896 | 0.757 | 0.793 | 0.112 | 14.82 |
2018 | 0.492 | 0.956 | 0.862 | 0.902 | 0.093 | 10.80 |
2019 | 0.488 | 0.922 | 0.843 | 0.885 | 0.088 | 10.45 |
2020 | 0.276 | 0.937 | 0.791 | 0.840 | 0.148 | 18.73 |
2021 | 0.531 | 0.887 | 0.817 | 0.839 | 0.059 | 7.20 |
Change Type of NDVI | Amount of NDVI Change | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | 2020–2021 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pixel No. | Area (%) | Pixel No. | Area (%) | Pixel No. | Area (%) | Pixel No. | Area (%) | Pixel No. | Area (%) | ||
Increasing | 0.9–1.0 | - | - | - | - | - | - | - | - | - | - |
0.8–0.9 | - | - | - | - | - | - | - | - | - | - | |
0.7–0.8 | - | - | - | - | - | - | - | - | - | - | |
0.6–0.7 | - | - | - | - | - | - | - | - | - | - | |
0.5–0.6 | - | - | - | - | - | - | - | - | 5 | 0.79 | |
0.4–0.5 | - | - | - | - | - | - | - | - | 9 | 1.42 | |
0.3–0.4 | - | - | 4 | 0.63 | - | - | 2 | 0.31 | 18 | 2.83 | |
0.2–0.3 | - | - | 41 | 6.46 | - | - | 4 | 0.63 | 34 | 5.35 | |
0.1–0.2 | 1 | 0.16 | 244 | 38.43 | 19 | 2.99 | 16 | 2.52 | 73 | 11.50 | |
0.0–0.1 | 165 | 25.98 | 334 | 52.60 | 120 | 18.90 | 259 | 40.79 | 141 | 22.20 | |
No change | 0.0 | - | - | - | - | - | - | - | - | - | - |
Decreasing | 0.0–−0.1 | 271 | 42.68 | 12 | 1.89 | 293 | 46.14 | 211 | 33.23 | 334 | 52.60 |
−0.1–−0.2 | 80 | 12.6 | - | - | 43 | 6.77 | 73 | 11.50 | 21 | 3.31 | |
−0.2–−0.3 | 33 | 5.20 | - | - | 33 | 5.20 | 31 | 4.88 | - | - | |
−0.3–−0.4 | 13 | 2.05 | - | - | 33 | 5.20 | 19 | 2.99 | - | - | |
−0.4–−0.5 | 60 | 9.45 | - | - | 47 | 7.40 | 12 | 1.89 | - | - | |
−0.5–−0.6 | 12 | 1.89 | - | - | 41 | 6.46 | 8 | 1.26 | - | - | |
−0.6–−0.7 | - | - | - | - | 6 | 0.94 | - | - | - | - | |
−0.7–−0.8 | - | - | - | - | - | - | - | - | - | - | |
−0.8–−0.9 | - | - | - | - | - | - | - | - | - | - | |
Total increasing | - | 166 | 26.14 | 623 | 98.11 | 139 | 21.89 | 281 | 44.25 | 280 | 44.09 |
Total decreasing | - | 469 | 73.86 | 12 | 1.89 | 496 | 78.11 | 354 | 55.75 | 355 | 55.91 |
Year | Min. | Max. | Mean | Median | Std. Dev | CV |
---|---|---|---|---|---|---|
2016 | 0.436 | 0.689 | 0.513 | 0.502 | 0.054 | 10.55 |
2017 | 0.356 | 0.710 | 0.497 | 0.490 | 0.081 | 16.34 |
2018 | 0.384 | 0.685 | 0.474 | 0.454 | 0.071 | 14.95 |
2019 | 0.318 | 0.706 | 0.429 | 0.411 | 0.083 | 19.38 |
2020 | 0.087 | 0.424 | 0.289 | 0.291 | 0.043 | 14.82 |
2021 | 0.252 | 0.477 | 0.299 | 0.295 | 0.024 | 8.11 |
Year | Regression Models | ME | RMSE | R2 |
---|---|---|---|---|
2016 | −0.0004 | 0.014 | 0.967 | |
2017 | −0.0002 | 0.023 | 0.957 | |
2018 | −0.0001 | 0.018 | 0.962 | |
2019 | −0.0004 | 0.029 | 0.884 | |
2020 | −0.0004 | 0.145 | 0.031 | |
2021 | 0.0002 | 0.048 | 0.322 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzaee, S.; Mirzakhani Nafchi, A. Monitoring Spatiotemporal Vegetation Response to Drought Using Remote Sensing Data. Sensors 2023, 23, 2134. https://doi.org/10.3390/s23042134
Mirzaee S, Mirzakhani Nafchi A. Monitoring Spatiotemporal Vegetation Response to Drought Using Remote Sensing Data. Sensors. 2023; 23(4):2134. https://doi.org/10.3390/s23042134
Chicago/Turabian StyleMirzaee, Salman, and Ali Mirzakhani Nafchi. 2023. "Monitoring Spatiotemporal Vegetation Response to Drought Using Remote Sensing Data" Sensors 23, no. 4: 2134. https://doi.org/10.3390/s23042134
APA StyleMirzaee, S., & Mirzakhani Nafchi, A. (2023). Monitoring Spatiotemporal Vegetation Response to Drought Using Remote Sensing Data. Sensors, 23(4), 2134. https://doi.org/10.3390/s23042134