Machine Learning and Eye Movements Give Insights into Neurodegenerative Disease Mechanisms
Abstract
:1. Introduction
- -
- Cognitive symptoms are dominant in Alzheimer’s disease (AD) but are secondary in Parkinson’s disease (PD);
- -
- Motor symptoms are characteristic of PD and less evident for AD;
- -
2. Eye Movements and Neurodegenerative Diseases
2.1. Standard Neurological Approach
2.2. EM in PD—Saccades
2.3. EM in PD—Antisaccades
2.4. EM in PD—Saccades and Antisaccades
2.5. EM in PD—Pursuit
2.6. EM in PD—Pupillometry
2.7. EM in PD—Multimodal Approach
2.8. Prediction of Disease Progression in Different PD Groups
2.9. Prediction of Disease Progression Related to Motor, Cognitive, and Emotional Longitudinal Changes in PD Patients
2.10. EM in AD vs. PD
3. Further Research
- -
- Results must be based on a broader control group.
- -
- Tests must ensure repeatability and reproducibility in a non-experimental environment.
- -
- Methods must be extended with new digital biomarkers that can be observed in a three-dimensional space.
Virtual Reality—A Research Opportunity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Younes, L.; Albert, M.; Moghekar, A.; Soldan, A.; Pettigrew, C.; Miller, M.I. Identifying Changepoints in Biomarkers During the Preclinical Phase of Alzheimer’s Disease. Front. Aging Neurosci. 2019, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Savica, R.; Rocca, W.A.; Ahlskog, J.E. When does Parkinson’s disease start? Arch. Neurol. 2010, 67, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, J.S.A.M.; Ehrt, U.; Weber, W.E.J.; Aarsland, D.; Leentjens, A.F.G. A systematic review of prevalence studies of depression in Parkinson’s disease. Mov. Disord. 2007, 23, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Haaksma, M.L.; Vilela, L.R.; Marengoni, A.; Calderón-Larrañaga, A.; Leoutsakos, J.-M.S.; Rikkert, M.G.M.O.; Melis, R.J.F. Comorbidity and progression of late onset Alzheimer’s disease: A systematic review. PLoS ONE 2017, 12, e0177044. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, A.A.; Sherman, S.J.; Frank, M.J. A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism. Neuropsychologia 2008, 46, 3144–3156. [Google Scholar] [CrossRef]
- Foley, J.A.; Lancaster, C.; Poznyak, E.; Borejko, O.; Niven, E.; Foltynie, T.; Abrahams, S.; Cipolotti, L. Impairment in Theory of Mind in Parkinson’s Disease Is Explained by Deficits in Inhibition. Park. Dis. 2019, 2019, 5480913. [Google Scholar] [CrossRef]
- Przybyszewski, A.W. Theory of mind helps to predict neurodegenerative processes in Parkinson’s disease In Proceedings of the International Conference on Computational Science. Krakow, Poland, 16–18 June 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 542–555. [Google Scholar]
- Briand, K.A.; Strallow, D.; Hening, W.; Poizner, H.; Sereno, A.B. Control of voluntary and reflexive saccades in Parkinson’s disease. Exp. Brain Res. 1999, 129, 38–48. [Google Scholar] [CrossRef]
- Chambers, J.M.; Prescott, T.J. Response times for visually guided saccades in persons with Parkinson’s disease: A meta-analytic review. Neuropsychologia 2010, 48, 887–899. [Google Scholar] [CrossRef]
- Przybyszewski, A.W.; Kon, M.; Szlufik, S.; Szymanski, A.; Habela, P.; Koziorowski, D.M. Multimodal Learning and Intelligent Prediction of Symptom Development in Individual Parkinson’s Patients. Sensors 2016, 16, 1498. [Google Scholar] [CrossRef]
- Śledzianowski, A.; Szymanski, A.; Drabik, A.; Szlufik, S.; Koziorowski, D.; Przybyszewski, A.W. Combining results of different oculometric tests improved prediction of Parkinson’s disease development. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Phuket, Thailand, 23–26 March 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 517–526. [Google Scholar]
- Turner, T.H.; Renfroe, J.B.; Duppstadt-Delambo, A.; Hinson, V.K. Validation of a Behavioral Approach for Measuring Saccades in Parkinson’s Disease. J. Mot. Behav. 2017, 49, 657–667. [Google Scholar] [CrossRef]
- Stuart, S.; Lawson, R.A.; Yarnall, A.J.; Nell, J.; Alcock, L.; Duncan, G.W.; Khoo, T.K.; Barker, R.; Rochester, L.; Burn, D.J.; et al. Pro-Saccades Predict Cognitive Decline in Parkinson’s Disease: ICICLE-PD. Mov. Disord. 2019, 34, 1690–1698. [Google Scholar] [CrossRef]
- Perneczky, R.; Ghosh, B.; Hughes, L.; Carpenter, R.; Barker, R.; Rowe, J. Saccadic latency in Parkinson’s disease correlates with executive function and brain atrophy, but not motor severity. Neurobiol. Dis. 2011, 43, 79–85. [Google Scholar] [CrossRef]
- Antoniades, C.A.; Xu, Z.; Carpenter, R.; Barker, R. The relationship between abnormalities of saccadic and manual response times in parkin- son’s disease. J. Park. Dis. 2013, 3, 557–563. [Google Scholar]
- Abasi, A.; Hoseinabadi, R.; Raji, P.; Friedman, J.H.; Hadian, M.-R. Evaluating Oculomotor Tests before and after Vestibular Rehabilitation in Patients with Parkinson’s Disease: A Pilot Pre-Post Study. Park. Dis. 2022, 2022, 6913691. [Google Scholar] [CrossRef]
- Wong, O.W.; Fung, G.; Chan, S. Characterizing the relationship between eye movement parameters and cognitive functions in non-demented Parkinson’s disease patients with eye tracking. JoVE (J. Vis. Exp.) 2019, 151, e60052. [Google Scholar]
- Wong, O.W.; Chan, A.Y.; Wong, A.; Lau, C.K.; Yeung, J.H.; Mok, V.C.; Lam, L.C.; Chan, S. Eye movement parameters and cognitive functions in Parkinson’s disease patients without dementia. Park. Relat. Disord. 2018, 52, 43–48. [Google Scholar] [CrossRef]
- Archibald, N.K.; Hutton, S.B.; Clarke, M.P.; Mosimann, U.P.; Burn, D.J. Visual exploration in Parkinson’s disease and Parkinson’s disease dementia. Brain 2013, 136, 739–750. [Google Scholar] [CrossRef]
- Everling, S.; Fischer, B. The antisaccade: A review of basic research and clinical studies. Neuropsychologia 1998, 36, 885–899. [Google Scholar] [CrossRef]
- Sledzianowski, A.; Szymanski, A.; Drabik, A.; Szlufik, S.; Koziorowski, D.M.; Przybyszewski, A.W. Measurements of antisaccades parameters can improve the prediction of Parkinson’s disease progression. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Yogyakarta, Indonesia, 8–11 April 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 602–614. [Google Scholar]
- Waldthaler, J.; Stock, L.; Student, J.; Sommerkorn, J.; Dowiasch, S.; Timmermann, L. Antisaccades in Parkinson’s Disease: A Meta-Analysis. Neuropsychol. Rev. 2021, 31, 628–642. [Google Scholar] [CrossRef]
- Waldthaler, J.; Stock, L.; Krüger-Zechlin, C.; Timmermann, L. Age at Parkinson’s disease onset modulates the effect of levodopa on response inhibition: Support for the dopamine overdose hypothesis from the antisaccade task. Neuropsychologia 2021, 163, 108082. [Google Scholar] [CrossRef]
- Waldthaler, J.; Stock, L.; Sommerkorn, J.; Krüger-Zechlin, C.; Timmermann, L. Antisaccade Latency Is Sensitive to Longitudinal Change of Motor and Cognitive Symptoms in Parkinson’s Disease. Mov. Disord. 2020, 36, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Antoniades, C.A.; Demeyere, N.; Kennard, C.; Humphreys, G.W.; Hu, M.T. Antisaccades and executive dysfunction in early drug-naive Parkinson’s disease: The discovery study. Mov. Disord. 2015, 30, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Fooken, J.; Patel, P.; Jones, C.B.; McKeown, M.J.; Spering, M. Preservation of Eye Movements in Parkinson’s Disease Is Stimulus- and Task-Specific. J. Neurosci. 2021, 42, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Koçoğlu, K.; Akdal, G.; Çolakoğlu, B.D.; Çakmur, R.; Sharma, J.C.; Ezard, G.; Hermens, F.; Hodgson, T.L. The effect of directional social cues on saccadic eye movements in Parkinson’s disease. Exp. Brain Res. 2021, 239, 2063–2075. [Google Scholar] [CrossRef] [PubMed]
- Munoz, M.J.; Goelz, L.C.; Pal, G.D.; Karl, J.A.; Metman, L.V.; Sani, S.; Rosenow, J.M.; Ciolino, J.D.; Kurani, A.S.; Corcos, D.M.; et al. Increased Subthalamic Nucleus Deep Brain Stimulation Amplitude Impairs Inhibitory Control of Eye Movements in Parkinson’s Disease. Neuromodul. Technol. Neural Interface 2022, 25, 866–876. [Google Scholar] [CrossRef]
- Przybyszewski, A.W.; Szlufik, S.; Dutkiewicz, J.; Habela, P.; Koziorowski, D.M. Machine learning on the video basis of slow pursuit eye movements can predict symptom development in Parkinson’s patients. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Bali, Indonesia, 23–25 March 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 268–276. [Google Scholar]
- Śledzianowski, A.; Szymański, A.; Szlufik, S.; Koziorowski, D. Rough set data mining algorithms and pursuit eye movement measurements help to predict symptom development in Parkinson’s disease. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Dong Hoi City, Vietnam, 19–21 March 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 428–435. [Google Scholar]
- Frei, K. Abnormalities of smooth pursuit in Parkinson’s disease: A systematic review. Clin. Park. Relat. Disord. 2020, 4, 100085. [Google Scholar] [CrossRef]
- MacAskill, M.R.; Graham, C.F.; Pitcher, T.L.; Myall, D.J.; Livingston, L.; van Stockum, S.; Dalrymple-Alford, J.C.; Anderson, T.J. The influence of motor and cognitive impairment upon visually-guided saccades in Parkinson’s disease. Neuropsychologia 2012, 50, 3338–3347. [Google Scholar] [CrossRef]
- Farashi, S. Analysis of vertical eye movements in Parkinson’s disease and its potential for diagnosis. Appl. Intell. 2021, 51, 8260–8270. [Google Scholar] [CrossRef]
- Tabashum, T.; Zaffer, A.; Yousefzai, R.; Colletta, K.; Jost, M.B.; Park, Y.; Chawla, J.; Gaynes, B.; Albert, M.V.; Xiao, T. Detection of Parkinson’s Disease Through Automated Pupil Tracking of the Post-illumination Pupillary Response. Front. Med. 2021, 8, 645293. [Google Scholar] [CrossRef]
- Tsitsi, P.; Benfatto, M.N.; Seimyr, G.; Larsson, O.; Svenningsson, P.; Markaki, I. Fixation Duration and Pupil Size as Diagnostic Tools in Parkinson’s Disease. J. Park. Dis. 2021, 11, 865–875. [Google Scholar]
- Bonnet, C.T.; Delval, A.; Singh, T.; Defebvre, L. Parkinson’s disease-related changes in the behavioral synergy between eye movements and postural movements. Eur. J. Neurosci. 2021, 54, 5161–5172. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, B.; Ren, Q.; Zhong, Q.; Li, Y.; Liu, G.; Ma, X.; Zhao, C. Eye movement especially vertical oculomotor impairment as an aid to assess Parkinson’s disease. Neurol. Sci. 2020, 42, 2337–2345. [Google Scholar] [CrossRef]
- Perkins, J.E.; Janzen, A.; Bernhard, F.P.; Wilhelm, K.; Brien, D.C.; Huang, J.; Coe, B.C.; Vadasz, D.; Mayer, G.; Munoz, D.P.; et al. Saccade, Pupil, and Blink Responses in Rapid Eye Movement Sleep Behavior Disorder. Mov. Disord. 2021, 36, 1720–1726. [Google Scholar] [CrossRef]
- Chudzik, A.; Szymański, A.; Nowacki, J.P.; Przybyszewski, A.W. Eye-tracking and machine learning significance in Parkinson’s disease symptoms prediction. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Phuket, Thailand, 23–26 March 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 537–547. [Google Scholar]
- Przybyszewski, A.W.; Chudzik, A.; Szlufik, S.; Habela, P.; Koziorowski, D.M. Comparison of Different Data Mining Methods to Determine Disease Progression in Dissimilar Groups of Parkinson’s Patients. Fundam. Informaticae 2020, 176, 167–181. [Google Scholar] [CrossRef]
- Przybyszewski, A.W.; Nowacki, J.P.; Drabik, A.; Szlufik, S.; Koziorowski, D.M. IGrC: Cognitive and motor changes during symptoms development in Parkinson’s disease patients. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Phuket, Thailand, 23–26 March 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 548–559. [Google Scholar]
- Przybyszewski, A.W.; Nowacki, J.P.; Drabik, A.; Szlufik, S.; Habela, P.; Koziorowski, D.M. Granular computing (GC) demonstrates interactions between depression and symptoms development in Parkinson’s disease patients. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Yogyakarta, Indonesia, 8–11 April 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 591–601. [Google Scholar]
- Yang, Q.; Wang, T.; Su, N.; Xiao, S.; Kapoula, Z. Specific saccade deficits in patients with Alzheimer’s disease at mild to moderate stage and in patients with amnestic mild cognitive impairment. Age 2012, 35, 1287–1298. [Google Scholar] [CrossRef]
- Wilcockson, T.D.; Mardanbegi, D.; Xia, B.; Taylor, S.; Sawyer, P.; Gellersen, H.W.; Leroi, I.; Killick, R.; Crawford, T.J. Abnormalities of saccadic eye movements in dementia due to Alzheimer’s disease and mild cognitive impairment. Aging 2019, 11, 5389–5398. [Google Scholar] [CrossRef]
- Petersen, R.C.; Doody, R.; Kurz, A.; Mohs, R.; Morris, J.; Rabins, P.; Ritchie, K.; Rossor, M.; Thal, L.; Winblad, B. Current concepts in mild cognitive impairment. Arch. Neurol. 2001, 58, 1985–1992. [Google Scholar]
- Pereira, M.L.G.F.; Villa, M.; Koh, D.; Camargo, M.Z.A.; Belan, A.; Radanovic, M.; Pomplun, M.; Forlenza, O. Saccadic eye movements associated with executive function decline in mild cognitive impairment and Alzheimer’s disease: Biomarkers (non- neuroimaging)/novel biomarkers. Alzheimer’s Dement. 2020, 16, e040036. [Google Scholar] [CrossRef]
- Boxer, A.L.; Garbutt, S.; Seeley, W.; Jafari, A.; Heuer, H.; Mirsky, J.; Hellmuth, J.; Trojanowski, J.; Huang, E.; DeArmond, S.; et al. Saccade abnormalities in autopsy-confirmed frontotemporal lobar degeneration and Alzheimer disease. Arch. Neurol. 2012, 69, 509–517. [Google Scholar]
- Hutton, J.T.; Nagel, J.A.; Loewenson, R.B. Eye tracking dysfunction in Alzheimer-type dementia. Neurology 1984, 34, 99. [Google Scholar] [CrossRef]
- Fletcher, W.A.; Sharpe, J.A. Smooth pursuit dysfunction in Alzheimer’s disease. Neurology 1988, 38, 272. [Google Scholar] [CrossRef] [PubMed]
- Kuskowski, M.A.; Malone, S.; Mortimer, J.; Dysken, M. Smooth pursuit eye movements in dementia of the Alzheimer-type. Alzheimer Dis. Assoc. Disord. 1989, 3, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Milgram, P.; Kishino, F. A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 1994, 77, 1321–1329. [Google Scholar]
- De Roeck, E.E.; De Deyn, P.P.; Dierckx, E.; Engelborghs, S. Brief cognitive screening instruments for early detection of Alzheimer’s disease: A systematic review. Alzheimer’s Res. Ther. 2019, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Salimi, S.; Irish, M.; Foxe, D.; Hodges, J.; Piguet, O.; Burrell, J. Can visuospatial measures improve the diagnosis of Alzheimer’s disease? Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2018, 10, 66–74. [Google Scholar] [CrossRef]
- Persky, S.; McBride, C.M. Immersive Virtual Environment Technology: A Promising Tool for Future Social and Behavioral Genomics Research and Practice. Health Commun. 2009, 24, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Reason, J.T. Motion sickness adaptation: A neural mismatch model. J. R. Soc. Med. 1978, 71, 819–829. [Google Scholar] [CrossRef]
- Brooks, J.O.; Goodenough, R.R.; Crisler, M.C.; Klein, N.D.; Alley, R.L.; Koon, B.L.; Logan, W.C.; Ogle, J.H.; Tyrrell, R.A.; Wills, R.F. Simulator sickness during driving simulation studies. Accid. Anal. Prev. 2010, 42, 788–796. [Google Scholar] [CrossRef]
- Park, G.D.; Allen, R.; Fiorentino, D.; Rosenthal, T.; Cook, M. Simulator sickness scores according to symptom susceptibility, age, and gender for an older driver assessment study. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2006, 50, 2702–2706. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Frank, L.H. A review of motion sickness with special reference to simulator sickness. In Proceedings of the National Academy of Science, Workshop on Simulator Sickness, Monterey, CA, USA, 26–28 September 1983. [Google Scholar]
- Curry, C.; Li, R.; Peterson, N.; Stoffregen, T.A. Cybersickness in Virtual Reality Head-Mounted Displays: Examining the Influence of Sex Differences and Vehicle Control. Int. J. Hum. Comput. Interact. 2020, 36, 1161–1167. [Google Scholar] [CrossRef]
- Caserman, P.; Garcia-Agundez, A.; Zerban, A.G.; Göbel, S. Cybersickness in current-generation virtual reality head-mounted displays: Systematic review and outlook. Virtual Real. 2021, 25, 1153–1170. [Google Scholar] [CrossRef]
- Kartolo, A.; Methot-Curtis, E. A discussion of the use of virtual reality in dementia. Virtual Real. Psychol. Med. Pedagog. Appl. 2012, 123–136. [Google Scholar] [CrossRef]
- Flynn, D.; van Schaik, P.; Blackman, T.; Femcott, C.; Hobbs, B.; Calderon, C. Developing a Virtual Reality–Based Methodology for People with Dementia: A Feasibility Study. CyberPsychology Behav. 2003, 6, 591–611. [Google Scholar] [CrossRef]
- Bek, J.; Poliakoff, E.; Lander, K. Measuring emotion recognition by people with Parkinson’s disease using eye-tracking with dynamic facial expressions. J. Neurosci. Methods 2020, 331, 108524. [Google Scholar] [CrossRef]
- Howett, D.; Castegnaro, A.; Krzywicka, K.; Hagman, J.; Marchment, D.; Henson, R.; Rio, M.; King, J.; Burgess, N.; Chan, D. Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain 2019, 142, 1751–1766. [Google Scholar] [CrossRef]
- Allison, S.L.; Fagan, A.M.; Morris, J.C.; Head, D. Spatial Navigation in Preclinical Alzheimer’s Disease. J. Alzheimer’s Dis. 2016, 52, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Mitolo, M.; Gardini, S.; Caffarra, P.; Ronconi, L.; Venneri, A.; Pazzaglia, F. Relationship between spatial ability, visuospatial working memory and self-assessed spatial orientation ability: A study in older adults. Cogn. Process. 2015, 16, 165–176. [Google Scholar] [CrossRef]
- Coutrot, A.; Schmidt, S.; Coutrot, L.; Pittman, J.; Hong, L.; Wiener, J.M.; Hölscher, C.; Dalton, R.C.; Hornberger, M.; Spiers, H.J. Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance. PLoS ONE 2019, 14, e0213272. [Google Scholar] [CrossRef]
- Daffner, K.R.; Scinto, L.; Weintraub, S.; Guinessey, J.E.; Mesulam, M.M. Diminished curiosity in patients with probable Alzheimer’s disease as measured by exploratory eye movements. Neurology 1992, 42, 320. [Google Scholar] [CrossRef]
- Daffner, K.R.; Scinto, L.F.M.; Weintraub, S.; Guinessey, J.; Mesulam, M.-M. The Impact of Aging on Curiosity as Measured by Exploratory Eye Movements. Arch. Neurol. 1994, 51, 368–376. [Google Scholar] [CrossRef]
- Daffner, K.R.; Mesulam, M.M.; Cohen, L.G.; Scinto, L.F. Mechanisms underlying diminished novelty-seeking behavior in patients with probable Alzheimer’s disease. Neuropsychiatry Neuropsychol. Behav. Neurol. 1999, 12, 58–66. [Google Scholar] [PubMed]
- Schacter, D.L.; Cooper, L.; Valdiserri, M. Implicit and explicit memory for novel visual objects in older and younger adults. Psychol. Aging 1992, 7, 299. [Google Scholar] [CrossRef] [PubMed]
- Manera, V.; Chapoulie, E.; Bourgeois, J.; Guerchouche, R.; David, R.; Ondrej, J.; Drettakis, G.; Robert, P. A Feasibility Study with Image-Based Rendered Virtual Reality in Patients with Mild Cognitive Impairment and Dementia. PLoS ONE 2016, 11, e0151487. [Google Scholar] [CrossRef] [PubMed]
- Kashif, M.; Ahmad, A.; Bandpei, M.A.M.; Farooq, M.; Iram, H.; e Fatima, R. Systematic review of the application of virtual reality to improve balance, gait and motor function in patients with Parkinson’s disease. Medicine 2022, 101, e29212. [Google Scholar] [CrossRef]
- Rottach, K.G.; Riley, D.; DiScenna, A.; Zivotofsky, A.; Leigh, R. Dynamic properties of horizontal and vertical eye movements in parkinsonian syndromes. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 1996, 39, 368–377. [Google Scholar] [CrossRef]
- Lueck, C.; Tanyeri, S.; Crawford, T.; Henderson, L.; Kennard, C. Anti-saccades and remembered saccades in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1990, 53, 284–288. [Google Scholar] [CrossRef]
- Mosimann, U.P.; Müri, R.M.; Burn, D.; Felblinger, J.; O’Brien, J.; McKeith, I.G. Saccadic eye movement changes in Parkinson’s disease dementia and dementia with Lewy bodies. Brain 2005, 128, 1267–1276. [Google Scholar] [CrossRef]
- Pretegiani, E.; Optican, L.M. Eye Movements in Parkinson’s Disease and Inherited Parkinsonian Syndromes. Front. Neurol. 2017, 8, 592. [Google Scholar] [CrossRef]
- Molitor, R.J.; Ko, P.; Ally, B. Eye movements in Alzheimer’s disease. J. Alzheimer’s Dis. 2015, 44, 1–12. [Google Scholar] [CrossRef]
- Beltrán, J.; García-Vázquez, M.S.; Benois-Pineau, J.; Gutierrez-Robledo, L.M.; Dartigues, J.-F. Computational Techniques for Eye Movements Analysis towards Supporting Early Diagnosis of Alzheimer’s Disease: A Review. Comput. Math. Methods Med. 2018, 2018, 2676409. [Google Scholar] [CrossRef]
- Lagun, D.; Manzanares, C.; Zola, S.M.; Buffalo, E.A.; Agichtein, E. Detecting cognitive impairment by eye movement analysis using automatic classification algorithms. J. Neurosci. Methods 2011, 201, 196–203. [Google Scholar] [CrossRef]
- Lage, C.; López-García, S.; Bejanin, A.; Kazimierczak, M.; Aracil-Bolaños, I.; Calvo-Córdoba, A.; Pozueta, A.; García-Martínez, M.; Fernández-Rodríguez, A.; Bravo-González, M.; et al. Distinctive Oculomotor Behaviors in Alzheimer’s Disease and Frontotemporal Dementia. Front. Aging Neurosci. 2021, 12, 525. [Google Scholar] [CrossRef]
- Bauman, J.; Gibbons, L.; Moore, M.; Mukherjee, S.; McCurry, S.; McCormick, W.; Bowen, J.; Trittschuh, E.; Glymour, M.; Mez, J.; et al. Associations between depression, traumatic brain injury, and cognitively-defined late-onset Alzheimer’s disease subgroups. J. Alzheimer’s Dis. 2019, 70, 611–619. [Google Scholar] [CrossRef]
- Buchman, A.S.; Bennett, D.A. Loss of motor function in preclinical Alzheimer’s disease. Expert Rev. Neurother. 2011, 11, 665–676. [Google Scholar] [CrossRef]
- Buracchio, T.; Dodge, H.H.; Howieson, D.B.; Wasserman, D.; Kaye, J. The Trajectory of Gait Speed Preceding Mild Cognitive Impairment. Arch. Neurol. 2010, 67, 980–986. [Google Scholar] [CrossRef]
- Watson, N.; Rosano, C.; Boudreau, R.; Simonsick, E.; Ferrucci, L.; Hardy, S.; Atkinson, H.; Yaffe, K.; Satterfield, S.; Harris, T.B.; et al. Executive function, memory, and gait speed decline in well-functioning older adults. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2010, 65, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Albert, M.; Zhu, Y.; Moghekar, A.; Mori, S.; Miller, M.I.; Soldan, A.; Pettigrew, C.; Selnes, O.; Li, S.; Wang, M.-C. Predicting progression from normal cognition to mild cognitive impairment for individuals at 5 years. Brain 2018, 141, 877–887. [Google Scholar] [CrossRef]
- Przybyszewski, A.W.; BIOCARD Study Team. AI Classifications Applied to Neuropsychological Trials in Normal Individuals That Predict Progression to Cognitive Decline; Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A., Eds.; ICCS 2022, LNCS 13352; Springer: Cham, Switzerland, 2022; pp. 150–156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybyszewski, A.W.; Śledzianowski, A.; Chudzik, A.; Szlufik, S.; Koziorowski, D. Machine Learning and Eye Movements Give Insights into Neurodegenerative Disease Mechanisms. Sensors 2023, 23, 2145. https://doi.org/10.3390/s23042145
Przybyszewski AW, Śledzianowski A, Chudzik A, Szlufik S, Koziorowski D. Machine Learning and Eye Movements Give Insights into Neurodegenerative Disease Mechanisms. Sensors. 2023; 23(4):2145. https://doi.org/10.3390/s23042145
Chicago/Turabian StylePrzybyszewski, Andrzej W., Albert Śledzianowski, Artur Chudzik, Stanisław Szlufik, and Dariusz Koziorowski. 2023. "Machine Learning and Eye Movements Give Insights into Neurodegenerative Disease Mechanisms" Sensors 23, no. 4: 2145. https://doi.org/10.3390/s23042145
APA StylePrzybyszewski, A. W., Śledzianowski, A., Chudzik, A., Szlufik, S., & Koziorowski, D. (2023). Machine Learning and Eye Movements Give Insights into Neurodegenerative Disease Mechanisms. Sensors, 23(4), 2145. https://doi.org/10.3390/s23042145