Regularization Solver Guided FISTA for Electrical Impedance Tomography
Abstract
:1. Introduction
2. EIT Sensing Mechanism and Mathematical Model
2.1. EIT Sensing Model
2.2. Forward Problem
2.3. Inverse Problem
3. Methodology
3.1. FISTA Algorithm
3.1.1. Non-Constrain LASSO Problem
3.1.2. Constrain LASSO Problem
3.1.3. Nesterov Accelerator
3.2. Regularization Solver (RS)
3.3. Pseudo-Code of RS-FISTA
Algorithm 1 Regularization Solver Guided Fast Iterative Shrinkage Threshold Algorithm (RS-FISTA) |
INPUT: Sensitivity matrix A, voltage y; parameters: denoising parameter α = 10−9, relative tolerance Epsilon = 10−5, maximum iterations Itermax.
OUTPUT: The calculated conductivity matrix x(k), the error between the actual voltage and the estimated voltage error. |
4. Comparison Algorithms and Evaluation Metrics
4.1. Comparison Algorithms
4.1.1. Landweber Method
4.1.2. Conjugate Gradient Method (CG Method)
4.1.3. Iterative Shrink Threshold Algorithm (ISTA)
4.1.4. NOSER Method
4.1.5. Newton-Raphson Method
4.2. Evaluation Metrics
5. Experimentations and Results
5.1. Simulation Experiments
5.2. Tank Experiments
5.3. Noise Experiments
6. Discussion and Conclusions
6.1. Experiments Analysis
6.2. Discussion on Convergence Iterations
6.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adler, A.; Alistair, B. Electrical Impedance Tomography: Tissue Properties to Image Measures. IEEE Trans. Biomed. Eng. 2017, 64, 2494–2504. [Google Scholar] [PubMed]
- Wang, Q.; He, J.; Wang, J.; Li, X.; Duan, X.; Zhang, P.; Chen, X.; Sun, Y. An image reconstruction algorithm for electrical impedance tomography using Symkaczmarz based on structured sparse representation. Trans. Inst. Meas. Control. 2019, 41, 2803–2815. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Fu, R.; Wang, D.; Chen, X.; Guo, X.; Wang, H. V-Shaped Dense Denoising Convolutional Neural Network for Electrical Impedance Tomography. IEEE Trans. Instrum. Meas. 2022, 71, 1–14. [Google Scholar] [CrossRef]
- Costa, E.L.; Borges, J.B.; Melo, A.; Suarez-Sipmann, F.; Toufen, C.; Bohm, S.H.; Amato, M.B. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009, 35, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.; Mueller, J. Calderón’s Method with a Spatial Prior for 2-D EIT Imaging of Ventilation and Perfusion. Sensors 2021, 21, 5635. [Google Scholar] [CrossRef] [PubMed]
- Holder, D. Electrical impedance tomography of brain function. In Proceedings of the 2008 World Automation Congress, Waikoloa, HI, USA, 28 September–2 October 2008; pp. 1–6. [Google Scholar]
- Scholz, B. Towards virtual electrical breast biopsy: Space-frequency MUSIC for trans-admittance data. IEEE Trans. Med. Imaging 2002, 21, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Samorè, A.; Guermandi, M.; Placati, S.; Guerrieri, R. Parametric Detection and Classification of Compact Conductivity Contrasts with Electrical Impedance Tomography. IEEE Trans. Instrum. Meas. 2017, 66, 2666–2679. [Google Scholar] [CrossRef]
- Borijindargoon, N.; Ng, B.P. Hybrid sensitivity-correlation regularisation matrix for electrical impedance tomography. IET Sci. Meas. Technol. 2019, 13, 1092–1101. [Google Scholar] [CrossRef]
- Nguyen, D.M.; Qian, P.; Barry, T.; McEwan, A. The region-of-interest based measurement selection process for electrical impedance tomography in radiofrequency cardiac ablation with known anatomical information. Biomed. Signal Process. Control. 2020, 56, 101706. [Google Scholar] [CrossRef]
- Pellegrini, S.P.; Trigo, F.; Lima, R. Adaptive Kalman filter-based information fusion in electrical impedance tomography for a two-phase flow. Mech. Syst. Signal Process. 2021, 150, 107326. [Google Scholar] [CrossRef]
- Solomon, J.; Marin, D.; Roy Choudhury, K.; Patel, B.; Samei, E. Effect of radiation Dose reduction and reconstruction algorithm on image noise, contrast, resolution, and Detectability of subtle hypoattenuating liver lesions at Multidetector cT: Filtered Back Projection versus a Commercial Model—Based Iterative Reconstruction Algorithm. Radiology 2017, 284, 777–787. [Google Scholar] [PubMed] [Green Version]
- Liu, H.; Tan, C.; Ren, S.; Dong, F. Real-Time Reconstruction for Low Contrast Ultrasonic Tomography Using Continuous-Wave Excitation. IEEE Trans. Instrum. Meas. 2020, 69, 1632–1642. [Google Scholar] [CrossRef]
- Smirnova, A. On TSVD regularization for a Broyden-type algorithm. J. Inverse Ill-Posed Probl. 2018, 26, 551–564. [Google Scholar] [CrossRef]
- Hamilton, S.J.; Hauptmann, A. Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging with Deep Neural Networks. IEEE Trans. Med. Imaging 2018, 37, 2367–2377. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Pei, Y.; Dong, F. An adaptive Tikhonov regularization parameter choice method for electrical resistance tomography. Flow Meas. Instrum. 2016, 50, 1–12. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, Y.; Tan, C.; Dong, F. A fast sparse reconstruction algorithm for electrical tomography. Meas. Sci. Technol. 2014, 25, 085401. [Google Scholar] [CrossRef]
- González, G.; Huttunen, J.M.J.; Kolehmainen, V.; Seppänen, A.; Vauhkonen, M. Experimental evaluation of 3D electrical impedance tomography with total variation prior. Inverse Probl. Sci. Eng. 2016, 24, 1411–1431. [Google Scholar] [CrossRef]
- Ren, S.; Sun, K.; Liu, D.; Dong, F. A Statistical Shape-Constrained Reconstruction Framework for Electrical Impedance Tomography. IEEE Trans. Med. Imaging 2019, 38, 2400–2410. [Google Scholar] [CrossRef]
- Tian, W.; Sun, J.; Ramli, M.F.; Yang, W. Adaptive Selection of Relaxation Factor in Landweber Iterative Algorithm. IEEE Sens. J. 2017, 17, 7029–7042. [Google Scholar] [CrossRef]
- Rao, L.; He, R.; Wang, Y.; Yan, W.; Bai, J.; Ye, D. An efficient improvement of modified Newton-Raphson algorithm for electrical impedance tomography. IEEE Trans. Magn. 1999, 35, 1562–1565. [Google Scholar]
- Edic, P.M.; Isaacson, D.; Saulnier, G.J.; Jain, H.; Newell, J.C. An iterative Newton-Raphson method to solve the inverse admittivity problem. IEEE Trans. Biomed. Eng. 1998, 45, 899–908. [Google Scholar] [CrossRef]
- Miao, L.; Ma, Y.; Wang, J. ROI-Based Image Reconstruction of Electrical Impedance Tomography Used to Detect Regional Conductivity Variation. IEEE Trans. Instrum. Meas. 2014, 63, 2903–2910. [Google Scholar] [CrossRef]
- Cheney, M.; Isaacson, D.; Newell, J.C.; Simske, S.; Goble, J. NOSER: An algorithm for solving the inverse conductivity problem. Int. J. Imaging Syst. Technol. 1990, 2, 66–75. [Google Scholar] [CrossRef]
- Zibetti, M.V.; Helou, E.S.; Pipa, D.R. Accelerating Overrelaxed and Monotone Fast Iterative Shrinkage-Thresholding Algorithms With Line Search for Sparse Reconstructions. IEEE Trans. Image Process. 2017, 26, 3569–3578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zibetti, M.V.; Pipa, D.R.; De Pierro, A.R. Fast and exact unidimensional L2–L1 optimization as an accelerator for iterative reconstruction algorithms. Digit. Signal Process. 2016, 48, 178–187. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, Q.; Liu, Y.; Zheng, J. Optimization of Depth from Defocus Based on Iterative Shrinkage Thresholding Algorithm. In Proceedings of the 15th International Conference, Web Information Systems and Applications, WISA 2018, Taiyuan, China, 14–15 September 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 131–144. [Google Scholar]
- Javaherian, A.; Soleimani, M.; Moeller, K.; Movafeghi, A.; Faghihi, R. An accelerated version of alternating direction method of multipliers for TV minimization in EIT. Appl. Math. Model. 2016, 40, 8985–9000. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, T.; Ye, J.A.; Tian, X.; Zhang, W.; Yang, B.; Dai, M.; Xu, C.; Fu, F. Fast Iterative Shrinkage-Thresholding Algorithm with Continuation for Brain Injury Monitoring Imaging Based on Electrical Impedance Tomography. Sensors 2022, 22, 9934. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Han, B. Application of a class of iterative algorithms and their accelerations to Jacobian-based linearized EIT image reconstruction. Inverse Probl. Sci. Eng. 2020, 29, 1108–1126. [Google Scholar] [CrossRef]
- Barber, D.C.; Brown, B.H. Applied potential tomography. Sci. Instrum. 1984, 17, 723. [Google Scholar] [CrossRef]
- Cheng, K.S.; Isaacson, D.; Newell, J.C.; Gisser, D.G. Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng. 1989, 36, 918–924. [Google Scholar] [CrossRef] [Green Version]
- Cheney, M.; Isaacson, D.; Somersalo, E.J.; Isaacsone, E.L. Layer-stripping reconstruction algorithm for impedance imaging. In Proceedings of the 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Paris, France, 29 October–1 November 1992; pp. 1694–1695. [Google Scholar] [CrossRef]
- Djajaputra, D. Electrical Impedance Tomography: Methods, History and Applications. Med. Phys. 2005, 32, 2731. [Google Scholar] [CrossRef]
- Somersalo, E.; Cheney, M.; Isaacson, D. Existence and uniqueness for electrode models for electric current computed tomography. Siam J. Appl. Math. 1992, 52, 1023–1040. [Google Scholar] [CrossRef]
- Liu, D.; Gu, D.; Smyl, D.; Deng, J.; Du, J. B-Spline Level Set Method for Shape Reconstruction in Electrical Impedance Tomography. IEEE Trans. Med. Imaging 2020, 39, 1917–1929. [Google Scholar] [CrossRef]
- Grychtol, B.; Adler, A. FEM electrode refinement for electrical impedance tomography. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 6429–6432. [Google Scholar]
- Vauhkonen, P.J.; Vauhkonen, M.; Savolainen, T.; Kaipio, J.P. Three-dimensional electrical impedance tomography based on the complete electrode model. IEEE Trans. Biomed. Eng. 1999, 46, 1150–1160. [Google Scholar] [CrossRef]
- Aykroyd, R.G.; Cattle, B.A. A boundary-element approach for the complete-electrode model of EIT illustrated using simulated and real data. Inverse Probl. Sci. Eng. 2007, 15, 441–461. [Google Scholar] [CrossRef]
- Liu, D.; Kolehmainen, V.; Siltanen, S.; Laukkanen, A.M.; Seppänen, A. Nonlinear Difference Imaging Approach to Three-Dimensional Electrical Impedance Tomography in the Presence of Geometric Modeling Errors. IEEE Trans. Biomed. Eng. 2016, 63, 1956–1965. [Google Scholar] [CrossRef]
- Geselowitz, D.B. An application of electrocardiographic lead theory to impedance plethysmography. IEEE Trans. Biomed. Eng. 1971, 18, 38–41. [Google Scholar] [CrossRef]
- Yang, W.Q.; Spink, D.M.; York, T.A.; McCann, H.J.M.S. An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography. Meas. Sci. Technol. 1999, 10, 1065–1069. [Google Scholar] [CrossRef]
- Tibshirani, R.J. The Lasso Problem and Uniqueness. Electron. J. Stat. 2013, 7, 1456–1490. [Google Scholar] [CrossRef]
- Combettes, P.L.; Wajs, V.R. Signal recovery by proximal forward-backward splitting. Soc. Ind. Appl. Math. 2005, 4, 1168–1200. [Google Scholar] [CrossRef] [Green Version]
- Amir, B.; Marc, T. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imaging 2009, 2, 183–202. [Google Scholar]
- Gregor, K.; LeCun, Y. Learning Fast Approximations of Sparse Coding. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; Volume 10, pp. 399–406. [Google Scholar]
- Yan, C.M.; Liu, X.M. Improved image reconstruction of Landweber capacitance tomography based on dual cycle. J. Sens. Technol. 2022, 35, 107–113. [Google Scholar]
- Han, G.; Qu, G.; Wang, Q. Weighting Algorithm and Relaxation Strategies of the Landweber Method for Image Reconstruction. Math. Probl. Eng. 2018, 2018, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Chang, X. Feature Extraction of Lung Ventilation by Biomedical Electrical Impedance Tomography. In Proceedings of the 2017 IEEE International Conference on Imaging Systems and Techniques (IST), Beijing, China, 18–20 October 2017; pp. 1–5. [Google Scholar]
- Chen, X.; Wang, Z.; Zhang, X.; Fu, R.; Wang, D.; Zhang, M.; Wang, H. Deep Autoencoder Imaging Method for Electrical Impedance Tomography. IEEE Trans. Instrum. Meas. 2021, 70, 1–15. [Google Scholar] [CrossRef]
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | Average | CAM (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SSIM | Landweber | 0.6314 | 0.6560 | 0.4610 | 0.4755 | 0.6318 | 0.4950 | 0.5780 | 0.6106 | 0.5571 | 0.6958 | 0.5792 | 25.71 |
CG | 0.7396 | 0.7060 | 0.6627 | 0.6503 | 0.5920 | 0.5912 | 0.6285 | 0.6054 | 0.6220 | 0.7377 | 0.6535 | 11.41 | |
NOSER | 0.8159 | 0.6872 | 0.6269 | 0.6481 | 0.6546 | 0.5969 | 0.6261 | 0.6311 | 0.6505 | 0.7533 | 0.6691 | 8.83 | |
Newton-Raphson | 0.8139 | 0.6885 | 0.6484 | 0.5559 | 0.4951 | 0.6009 | 0.5134 | 0.5920 | 0.4122 | 0.3751 | 0.5695 | 27.84 | |
ISTA | 0.5407 | 0.6064 | 0.4544 | 0.4734 | 0.4639 | 0.5068 | 0.5947 | 0.6011 | 0.4810 | 0.5506 | 0.5273 | 38.08 | |
FISTA | 0.6776 | 0.5293 | 0.4572 | 0.4707 | 0.6241 | 0.4898 | 0.4177 | 0.5998 | 0.5315 | 0.6617 | 0.5459 | 33.37 | |
RS-FISTA | 0.8642 | 0.8186 | 0.6824 | 0.7682 | 0.7002 | 0.6709 | 0.6467 | 0.6618 | 0.6629 | 0.8052 | 0.7281 | ||
RMSE | Landweber | 4.1512 | 3.9204 | 9.5336 | 8.0922 | 4.7712 | 8.0247 | 5.0658 | 4.4982 | 5.9477 | 4.6288 | 5.8634 | 35.14 |
CG | 2.2004 | 3.1769 | 3.3918 | 4.1313 | 5.5283 | 6.4158 | 4.3224 | 4.8471 | 4.7803 | 4.5498 | 4.3344 | 10.21 | |
NOSER | 3.0971 | 3.5265 | 3.9107 | 4.2672 | 4.4006 | 6.4183 | 4.2285 | 4.1526 | 4.5111 | 4.6980 | 4.3211 | 9.93 | |
Newton-Raphson | 3.0886 | 3.5107 | 3.2570 | 5.7159 | 7.5509 | 5.8777 | 5.9001 | 4.4714 | 8.8449 | 7.1195 | 5.5337 | 29.67 | |
ISTA | 3.5797 | 4.4090 | 9.6882 | 7.1962 | 7.7374 | 7.0151 | 4.6817 | 4.6917 | 7.3017 | 6.8406 | 6.3141 | 38.36 | |
FISTA | 3.5157 | 6.3535 | 9.6369 | 8.8076 | 4.8842 | 7.6574 | 8.5180 | 4.4623 | 6.4900 | 4.8457 | 6.5171 | 40.28 | |
RS-FISTA | 2.0716 | 3.1538 | 3.2188 | 4.1123 | 4.3155 | 4.8655 | 4.1900 | 4.0350 | 4.4323 | 4.5241 | 3.8919 | ||
PSNR | Landweber | 35.76700003 | 36.2641 | 28.5456 | 29.9695 | 34.5583 | 30.0423 | 34.0379 | 35.0700 | 32.6438 | 35.4034 | 33.2302 | 10.16 |
CG | 41.2807 | 38.0908 | 37.5221 | 35.8091 | 33.2789 | 31.9858 | 35.2599 | 34.4212 | 34.5417 | 34.971 | 35.7161 | 2.49 | |
NOSER | 38.3118 | 37.1838 | 36.2858 | 35.528 | 35.2607 | 31.9824 | 35.6071 | 35.7645 | 35.0451 | 34.6925 | 35.5662 | 2.92 | |
Newton-Raphson | 38.3356 | 37.2229 | 37.8745 | 32.9891 | 30.5708 | 32.7466 | 32.7137 | 35.1219 | 29.1969 | 31.0818 | 33.7854 | 8.35 | |
ISTA | 37.0539 | 35.2440 | 28.4059 | 30.9887 | 30.3589 | 31.2102 | 34.7228 | 34.7042 | 30.8623 | 31.429 | 32.4980 | 12.64 | |
FISTA | 37.2105 | 32.0705 | 28.4521 | 29.2336 | 34.3549 | 30.4492 | 29.5240 | 35.1396 | 31.8860 | 34.4236 | 32.2744 | 13.42 | |
RS-FISTA | 41.8048 | 38.1542 | 37.9769 | 35.8490 | 35.4301 | 34.3883 | 35.6865 | 36.0140 | 35.1982 | 35.5628 | 36.6065 |
Tank 1 | Tank 2 | Tank 3 | Tank 4 | Tank 5 | Average | CAM (%) | ||
---|---|---|---|---|---|---|---|---|
SSIM | Landweber | 0.5958 | 0.6597 | 0.5288 | 0.5767 | 0.5574 | 0.5837 | 24.26 |
CG | 0.7985 | 0.587 | 0.6081 | 0.6905 | 0.581 | 0.653 | 11.07 | |
NOSER | 0.802 | 0.6365 | 0.6042 | 0.68 | 0.5929 | 0.6631 | 9.38 | |
Newton-Raphson | 0.8064 | 0.5174 | 0.6532 | 0.3932 | 0.5542 | 0.5849 | 24.01 | |
ISTA | 0.4397 | 0.6265 | 0.5055 | 0.5657 | 0.533 | 0.5341 | 35.8 | |
FISTA | 0.6857 | 0.6027 | 0.442 | 0.4566 | 0.4379 | 0.525 | 38.16 | |
RS-FISTA | 0.8188 | 0.7125 | 0.679 | 0.7166 | 0.6996 | 0.7253 | ||
RMSE | Landweber | 6.2126 | 4.2844 | 5.9118 | 5.5837 | 5.202 | 5.4389 | 36.73 |
CG | 2.3693 | 7.1053 | 4.579 | 3.8017 | 3.9482 | 4.3607 | 21.08 | |
NOSER | 2.3117 | 4.588 | 4.7049 | 3.7014 | 3.9506 | 3.8513 | 10.65 | |
Newton-Raphson | 2.4178 | 8.1639 | 4.0846 | 8.5454 | 4.0266 | 5.4477 | 36.83 | |
ISTA | 9.506 | 4.7078 | 6.1617 | 5.7965 | 5.7223 | 6.3789 | 46.05 | |
FISTA | 3.3496 | 5.0391 | 7.1245 | 7.6213 | 7.9063 | 6.2082 | 44.57 | |
RS-FISTA | 2.3031 | 3.6883 | 4.0452 | 3.5559 | 3.6139 | 3.4413 | ||
PSNR | Landweber | 32.2653 | 35.4931 | 32.6965 | 33.1924 | 33.8074 | 33.4909 | 12.12 |
CG | 40.6386 | 31.0991 | 34.9153 | 36.5313 | 36.2029 | 35.8774 | 4.66 | |
NOSER | 40.8521 | 34.8983 | 34.6797 | 36.7636 | 36.1975 | 36.6784 | 2.38 | |
Newton-Raphson | 40.4623 | 29.8928 | 35.9077 | 29.4961 | 36.032 | 34.3582 | 9.29 | |
ISTA | 28.5709 | 34.6745 | 32.3367 | 32.8675 | 32.9795 | 32.2858 | 16.31 | |
FISTA | 37.631 | 34.0838 | 31.0757 | 30.4902 | 30.1713 | 32.6904 | 14.87 | |
RS-FISTA | 40.8844 | 36.7942 | 35.992 | 37.1118 | 36.9713 | 37.5507 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Chen, X.; Wang, D.; Wang, Z.; Zhang, X.; Xie, N.; Liu, L. Regularization Solver Guided FISTA for Electrical Impedance Tomography. Sensors 2023, 23, 2233. https://doi.org/10.3390/s23042233
Wang Q, Chen X, Wang D, Wang Z, Zhang X, Xie N, Liu L. Regularization Solver Guided FISTA for Electrical Impedance Tomography. Sensors. 2023; 23(4):2233. https://doi.org/10.3390/s23042233
Chicago/Turabian StyleWang, Qian, Xiaoyan Chen, Di Wang, Zichen Wang, Xinyu Zhang, Na Xie, and Lili Liu. 2023. "Regularization Solver Guided FISTA for Electrical Impedance Tomography" Sensors 23, no. 4: 2233. https://doi.org/10.3390/s23042233
APA StyleWang, Q., Chen, X., Wang, D., Wang, Z., Zhang, X., Xie, N., & Liu, L. (2023). Regularization Solver Guided FISTA for Electrical Impedance Tomography. Sensors, 23(4), 2233. https://doi.org/10.3390/s23042233