Comparison between Two Time Synchronization and Data Alignment Methods for Multi-Channel Wearable Biosensor Systems Using BLE Protocol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Paired Timestamp Generation and Peripheral ADC Timestamp
2.2. Affine Model Time Synchronization
2.3. Simple Data Alignment (SDA) Algorithm
2.4. Linear Interpolation Data Alignment (LIDA) Algorithm
2.5. Methods of Analysis
3. Results
4. Discussion
4.1. Overall Performance of SDA and LIDA Algorithms
4.2. Consideration of Previous Time Synchronization Methods
4.3. Connection Loss and Packet Loss
4.4. Parameters of the Affine Time Synchronization Model
4.5. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pantelopoulos, A.; Bourbakis, N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Part C 2009, 40, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cang, S.; Yu, H. A survey on wearable sensor modality centered human activity recognition in health care. Expert Syst. Appl. 2019, 137, 167–190. [Google Scholar] [CrossRef]
- Mamdiwar, S.D.; Shakruwala, Z.; Chadha, U.; Srinivasan, K.; Chang, C.Y. Recent advances on IoT-assisted wearable sensor systems for healthcare monitoring. Biosensors 2021, 11, 372. [Google Scholar] [CrossRef] [PubMed]
- Azodo, I.; Williams, R.; Sheikh, A.; Cresswell, K. Opportunities and challenges surrounding the use of data from wearable sensor devices in health care: Qualitative interview study. J. Med. Internet Res. 2020, 22, e19542. [Google Scholar] [CrossRef] [PubMed]
- Nesenbergs, K.; Selavo, L. Smart textiles for wearable sensor networks: Review and early lessons. In Proceedings of the 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, Torino, Italy, 7–9 May 2015; pp. 402–406. [Google Scholar]
- Choi, J.; Ahmed, B.; Gutierrez-Osuna, R. Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Trans Inf. Technol. Biomed. 2011, 16, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonato, P. Wearable sensors/systems and their impact on biomedical engineering. IEEE Eng. Med. Biol. Mag. 2003, 22, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.C. Wearable sensors for human activity monitoring: A review. IEEE Sens. J. 2014, 15, 1321–1330. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, L.; Shen, G. Recent advances in smart wearable sensing systems. Adv. Mater. Technol. 2018, 3, 1800444. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Lu, J.; Hu, F.; Hao, Q. Bluetooth low energy for wearable sensor-based healthcare systems. In Proceedings of the 2014 IEEE Healthcare Innovation Conference (HIC), Seattle, WA, USA, 8–10 October 2014; pp. 251–254. [Google Scholar]
- Montanari, A.; Nawaz, S.; Mascolo, C.; Sailer, K. A study of bluetooth low energy performance for human proximity detection in the workplace. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), Kona, HI, USA, 13–17 March 2017; pp. 90–99. [Google Scholar]
- Cifuentes, C.; Braidot, A.; Rodríguez, L.; Frisoli, M.; Santiago, A.; Frizera, A. Development of a wearable ZigBee sensor system for upper limb rehabilitation robotics. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1989–1994. [Google Scholar]
- Malhi, K.; Mukhopadhyay, S.C.; Schnepper, J.; Haefke, M.; Ewald, H. A Zigbee-based wearable physiological parameters monitoring system. IEEE Sens. J. 2010, 12, 423–430. [Google Scholar] [CrossRef]
- Rachim, V.P.; Chung, W.Y. Wearable noncontact armband for mobile ECG monitoring system. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1112–1118. [Google Scholar] [CrossRef]
- Brunelli, D.; Farella, E.; Giovanelli, D.; Milosevic, B.; Minakov, I. Design considerations for wireless acquisition of multichannel sEMG signals in prosthetic hand control. IEEE Sens. J. 2016, 16, 8338–8347. [Google Scholar] [CrossRef]
- Contaldo, M.; Banerjee, B.; Ruffieux, D.; Chabloz, J.; Roux, E.L.; Enz, C.C. A 2.4-GHz BAW-based transceiver for wireless body area networks. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Tosi, J.; Taffoni, F.; Santacatterina, M.; Sannino, R.; Formica, D. Performance evaluation of bluetooth low energy: A systematic review. Sensors 2017, 17, 2898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omre, A.H.; Keeping, S. Bluetooth low energy: Wireless connectivity for medical monitoring. J. Diabetes Sci. Technol. 2010, 4, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Fekr, A.R.; Radecka, K.; Zilic, Z. Design and evaluation of an intelligent remote tidal volume variability monitoring system in e-health applications. IEEE J. Biomed. Health Inform. 2015, 19, 1532–1548. [Google Scholar] [CrossRef]
- Gravina, R.; Alinia, P.; Ghasemzadeh, H.; Fortino, G. Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Inf. Fusion 2017, 35, 68–80. [Google Scholar] [CrossRef]
- Tirado-Andrés, F.; Araujo, A. Performance of clock sources and their influence on time synchronization in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719879372. [Google Scholar] [CrossRef] [Green Version]
- Sichitiu, M.L.; Veerarittiphan, C. Simple, accurate time synchronization for wireless sensor networks. In Proceedings of the 2003 IEEE Wireless Communications and Networking, 2003 (WCNC 2003), New Orleans, LA, USA, 16–20 March 2003; Volume 2, pp. 1266–1273. [Google Scholar]
- Sundararaman, B.; Buy, U.; Kshemkalyani, A.D. Clock synchronization for wireless sensor networks: A survey. Ad Hoc Netw. 2005, 3, 281–323. [Google Scholar] [CrossRef]
- Bello, L.L.; Mirabella, O. Clock synchronization issues in bluetooth-based industrial measurements. In Proceedings of the 2006 IEEE International Workshop on Factory Communication Systems, Torino, Italy, 28–30 June 2006; pp. 193–202. [Google Scholar]
- Calado, A.; Macciantelli, G.; Errico, V.; Gruppioni, E.; Saggio, G. Evaluation of dedicated bluetooth low energy wireless data transfer for an implantable EMG sensor. In Proceedings of the 2020 3rd International Conference on Sensors, Signal and Image Processing, Prague, Czech Republic, 9–11 October 2020; pp. 52–57. [Google Scholar]
- Asgarian, F.; Najafi, K. Time synchronization in a network of bluetooth low energy beacons. In Proceedings of the SIGCOMM Posters Demos, Los Angeles, CA, USA, 22–24 August 2017; pp. 119–120. [Google Scholar]
- Bideaux, A.; Zimmermann, B.; Hey, S.; Stork, W. Synchronization in wireless biomedical-sensor networks with bluetooth low energy. Curr. Dir. Biomed. Eng. 2015, 1, 73–76. [Google Scholar] [CrossRef]
- Rheinländer, C.C.; Wehn, N. Precise synchronization time stamp generation for bluetooth low energy. In Proceedings of the 2016 IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Li, J. Advanced Control of Upper-Limb Prostheses with Time-Synchronized Distributed Wireless Electrodes. Ph.D. Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, December 2022. [Google Scholar]
- Sridhar, S.; Misra, P.; Warrior, J. Cheepsync: A time synchronization service for resource constrained bluetooth low energy advertisers. In Proceedings of the 14th International Conference on Information Processing in Sensor Networks, Seattle, WA, USA, 13–16 April 2015; pp. 364–365. [Google Scholar]
- Kenney, J.F.; Keeping, E. Linear regression and correlation. In Mathematics of Statistics; Van Nostrand Company: Princeton, NJ, USA, 1962; pp. 252–285. [Google Scholar]
- Quintin, E.; McDonald, B.; Li, J.; Wang, H.; Clancy, T.; Farrell, T. Synchronization of multiple bluetooth low energy sensors for prosthetic control. In Proceedings of the 2021 American Orthotic Prosthetic National Assembly, Boston, MA, USA, 9–11 September 2021. [Google Scholar]
- Teplan, M. Fundamentals of EEG measurement. Measure. Sci. Rev. 2002, 2, 1–11. [Google Scholar]
- Bailey, J.J.; Berson, A.S.; Garson, A.; Horan, L.G.; Macfarlane, P.W.; Mortara, D.W.; Zywietz, C. Recommendations for standardization and specifications in automated electrocardiography: Bandwidth and digital signal processing. Circulation 1990, 81, 730–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kligfield, P.; Gettes, L.S.; Bailey, J.J.; Childers, R.; Deal, B.J.; Hancock, E.W.; van Herpen, G.; Kors, J.A.; Macfarlane, P.; Mirvis, D.M.; et al. Recommendations for the standardization and interpretation of the electrocardiogram: Part I: The electrocardiogram and its technology. Circulation 2007, 115, 1306–1324. [Google Scholar] [CrossRef] [Green Version]
- Hogan, N.; Mann, R.W. Myoelectric signal processing: Optimal estimation applied to electromyography—Part II: Experimental demonstration of optimal myoprocessor performance. IEEE Trans. Biomed. Eng. 1980, 27, 396–410. [Google Scholar] [CrossRef] [PubMed]
- Merletti, R.; Cerone, G.L. Tutorial. Surface EMG detection, conditioning and pre-processing: Best practices. J. Electromyogr. Kinesiol. 2020, 54, 102440. [Google Scholar] [CrossRef] [PubMed]
- Gallina, A.; Disselhorst-Klug, C.; Farina, D.; Merletti, R.; Besomi, M.; Holobar, A.; Enoka, R.M.; Hug, F.; Falla, D.; Sogaard, K.; et al. Consensus for experimental design in electromyograpy (CEDE) project; high-density surface electromyography matrix. J. Electromyogr. Kinesiol. 2022, 64, 102656. [Google Scholar] [CrossRef] [PubMed]
- Proakis, J.G.; Manolakis, D.G. Digital Signal Processing: Principles, Algorithms, and Applications; Pearson Education, Inc.: Hoboken, NJ, USA, 2022; pp. 65–78. [Google Scholar]
- Dian, F.J.; Yousefi, A.; Somaratne, K. A study in accuracy of time synchronization of BLE devices using connection-based event. In Proceedings of the IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 3–5 October 2017; pp. 595–601. [Google Scholar]
- Kaur, B.; Kaur, A. A survey of time synchronization protocols for wireless sensor networks. Int. J. Comput. Sci. Mob. Comput. 2013, 2, 100–106. [Google Scholar]
- Ballantine, J.P.; Jerbert, A.R. Distance from a line, or plane, to a point. Am. Math. Mon. 1952, 59, 242–243. [Google Scholar]
- Farrell, T.R.; Weir, R.F. The optimal controller delay for myoelectric prostheses. IEEE Trans. Biomed. Eng. 2007, 15, 111–118. [Google Scholar] [CrossRef]
Input Frequency (Hz) | Absolute Alignment Error (ms) | Ave. ± Std. Dev. Correlation Coeff. | ||
---|---|---|---|---|
Ave. ± Std. Dev. | 90th% | 95th% | ||
10 | 0.38 ± 0.39 | 0.87 | 1.19 | 0.9997 ± 0.0002 |
30 | 0.70 ± 0.73 | 1.53 | 2.03 | 0.9991 ± 0.0016 |
50 | 0.64 ± 0.59 | 1.39 | 2.01 | 0.9983 ± 0.0031 |
70 | 0.59 ± 0.53 | 1.23 | 1.61 | 0.9974 ± 0.0074 |
90 | 0.66 ± 0.50 | 1.40 | 1.62 | 0.9966 ± 0.0094 |
110 | 0.55 ± 0.43 | 1.13 | 1.37 | 0.9959 ± 0.0125 |
130 | 0.49 ± 0.35 | 0.95 | 1.10 | 0.9954 ± 0.0183 |
150 | 0.53 ± 0.44 | 1.17 | 1.35 | 0.9947 ± 0.0211 |
170 | 0.63 ± 0.48 | 1.26 | 1.52 | 0.9937 ± 0.0260 |
190 | 0.45 ± 0.31 | 0.88 | 0.98 | 0.9930 ± 0.0345 |
210 | 0.50 ± 0.41 | 1.06 | 1.29 | 0.9919 ± 0.0404 |
Input Frequency (Hz) | Absolute Alignment Error (ms) | Ave. ± Std. Dev. Correlation Coeff. | ||
---|---|---|---|---|
Ave. ± Std. Dev. | 90th% | 95th% | ||
10 | 0.30 ± 0.41 | 0.87 | 1.15 | 0.9999 ± 0.00008 |
30 | 0.58 ± 0.63 | 1.29 | 1.82 | 0.9997 ± 0.0004 |
50 | 0.47 ± 0.57 | 1.22 | 1.75 | 0.9996 ± 0.0008 |
70 | 0.41 ± 0.52 | 1.10 | 1.48 | 0.9995 ± 0.0010 |
90 | 0.52 ± 0.46 | 1.21 | 1.50 | 0.9991 ± 0.0016 |
110 | 0.37 ± 0.37 | 0.84 | 1.07 | 0.9992 ± 0.0020 |
130 | 0.34 ± 0.30 | 0.70 | 0.87 | 0.9984 ± 0.0116 |
150 | 0.38 ± 0.37 | 0.85 | 1.08 | 0.9988 ± 0.0023 |
170 | 0.48 ± 0.42 | 1.07 | 1.35 | 0.9983 ± 0.0043 |
190 | 0.19 ± 0.20 | 0.50 | 0.63 | 0.9965 ± 0.0140 |
210 | 0.36 ± 0.38 | 0.83 | 1.19 | 0.9978 ± 0.0107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Li, J.; McDonald, B.E.; Farrell, T.R.; Huang, X.; Clancy, E.A. Comparison between Two Time Synchronization and Data Alignment Methods for Multi-Channel Wearable Biosensor Systems Using BLE Protocol. Sensors 2023, 23, 2465. https://doi.org/10.3390/s23052465
Wang H, Li J, McDonald BE, Farrell TR, Huang X, Clancy EA. Comparison between Two Time Synchronization and Data Alignment Methods for Multi-Channel Wearable Biosensor Systems Using BLE Protocol. Sensors. 2023; 23(5):2465. https://doi.org/10.3390/s23052465
Chicago/Turabian StyleWang, He, Jianan Li, Benjamin E. McDonald, Todd R. Farrell, Xinming Huang, and Edward A. Clancy. 2023. "Comparison between Two Time Synchronization and Data Alignment Methods for Multi-Channel Wearable Biosensor Systems Using BLE Protocol" Sensors 23, no. 5: 2465. https://doi.org/10.3390/s23052465
APA StyleWang, H., Li, J., McDonald, B. E., Farrell, T. R., Huang, X., & Clancy, E. A. (2023). Comparison between Two Time Synchronization and Data Alignment Methods for Multi-Channel Wearable Biosensor Systems Using BLE Protocol. Sensors, 23(5), 2465. https://doi.org/10.3390/s23052465