A Novel Eco-Friendly and Highly Sensitive Solid Lead–Tin Microelectrode for Trace U(VI) Determination in Natural Water Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Reagents
2.3. Design of a Solid Lead–Tin Microelectrode
2.4. Real Water Sample Preparation
2.5. Measurements Procedure
3. Results and Discussion
3.1. Operational Potential Range of Solid Lead–Tin Microelectrode
3.2. Impact of pH on U(VI)–Cupferron Signal
3.3. Effect of Cupferron Concentration
3.4. Activation Step’s Conditions
3.5. Accumulation Conditions
3.6. Frequency Optimization
3.7. Calibration Studies
3.8. Stability of the Sensor
3.9. Interferences
3.10. Analytical Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montenegro, M.I.; Queirós, M.A.; Daschbach, J.L. Microelectrodes: Theory and Applications; Springer Science and Business Media: Dordrecht, The Netherlands, 1991; ISBN 9401132100. [Google Scholar]
- Forster, R.J. Microelectrodes: New Dimensions in Electrochemistry. Chem. Soc. Rev. 1994, 23, 289–297. [Google Scholar] [CrossRef]
- Stulík, K.; Amatore, C.; Holub, K.; Marecek, V.; Kutner, W. Microelectrodes. Definitions, Characterization, and Applications (Technical Report). Pure Appl. Chem. 2000, 72, 1483–1492. [Google Scholar] [CrossRef]
- Wang, J. Analytical Electrochemistry Second Edition. Wiley-VCH 2000, 3, 546–548. [Google Scholar]
- Zoski, C.G. Ultramicroelectrodes: Design, Fabrication, and Characterization. Electroanalysis 2002, 14, 1041–1051. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A.; Raptis, I.; Speliotis, T. Disposable Lithographically Fabricated Bismuth Microelectrode Arrays for Stripping Voltammetric Detection of Trace Metals. Electrochem. Commun. 2011, 13, 391–395. [Google Scholar] [CrossRef]
- Andrews, M.K.; Harris, P.D. Fabrication and Sensing Applications of Microelectrodes on Silicon Substrates. Electroanalysis 1998, 10, 1112–1118. [Google Scholar] [CrossRef]
- Datta, M.; Landolt, D. Fundamental Aspects and Applications of Electrochemical Microfabrication. Electrochim. Acta 2000, 45, 2535–2558. [Google Scholar] [CrossRef]
- Tsigara, A.; Benkhial, A.; Warren, S.; Akkari, F.; Wright, J.; Frehill, F.; Dempsey, E. Metal Microelectrode Nanostructuring Using Nanosphere Lithography and Photolithography with Optimization of the Fabrication Process. Thin Solid Films 2013, 537, 269–274. [Google Scholar] [CrossRef]
- Daly, R.; Narayan, T.; Shao, H.; O’riordan, A.; Lovera, P. Platinum-Based Interdigitated Micro-Electrode Arrays for Reagent-Free Detection of Copper. Sensors 2021, 21, 3544. [Google Scholar] [CrossRef]
- Xiong, C.; Xu, Y.; Bian, C.; Wang, R.; Xie, Y.; Han, M.; Xia, S. Synthesis and Characterization of Ru-MOFs on Microelectrode for Trace Mercury Detection. Sensors 2020, 20, 6686. [Google Scholar] [CrossRef]
- Xie, X.; Stueben, D.; Berner, Z. The Application of Microelectrodes for the Measurements of Trace Metals in Water. Anal. Lett. 2005, 38, 2281–2300. [Google Scholar] [CrossRef]
- Fleischmann, M.; Pons, S.; Rolison, D.; Schmidt, P. Ultramicroelectrodes; Datatech Systems: Charlotte, NC, USA, 1987; ISBN 0961892706. [Google Scholar]
- da Silva, S.M. Determination of Lead in the Absence of Supporting Electrolyte Using Carbon Fiber Ultramicroelectrode Without Mercury Film. Electroanalysis 1998, 10, 722–725. [Google Scholar] [CrossRef]
- Silva, S.M.; Bond, A.M. Contribution of Migration Current to the Voltammetric Deposition and Stripping of Lead with and without Added Supporting Electrolyte at a Mercury-Free Carbon Fibre Microdisc Electrode. Anal. Chim. Acta 2003, 500, 307–321. [Google Scholar] [CrossRef]
- Gao, X.; Lee, J.; White, H.S. Natural Convection at Microelectrodes. Anal. Chem. 1995, 67, 1541–1545. [Google Scholar] [CrossRef]
- Bond, A.M. Past, Present and Future Contributions of Microelectrodes to Analytical Studies Employing Voltammetric Detection. A Review. Analyst 1994, 119, 1R. [Google Scholar] [CrossRef]
- Abdelsalam, M.E.; Denuault, G.; Daniele, S. Calibrationless Determination of Cadmium, Lead and Copper in Rain Samples by Stripping Voltammetry at Mercury Microelectrodes. Anal. Chim. Acta 2002, 452, 65–75. [Google Scholar] [CrossRef]
- Sahoo, S.; Satpati, A.K.; Reddy, A.V.R. Stripping Voltammetric Determination of Uranium in Water Samples Using Hg-Thin Film Modified Multiwall Carbon Nanotube Incorporated Carbon Paste Electrode. Am. J. Anal. Chem. 2013, 4, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Bleise, A.; Danesi, P.R.; Burkart, W. Properties, Use and Health Effects of Depleted Uranium (DU): A General Overview. J. Environ. Radioact. 2003, 64, 93–112. [Google Scholar] [CrossRef]
- Raymond-Whish, S.; Mayer, L.P.; O’Neal, T.; Martinez, A.; Sellers, M.A.; Christian, P.J.; Marion, S.L.; Begay, C.; Propper, C.R.; Hoyer, P.B.; et al. Drinking Water with Uranium below the U.S. EPA Water Standard Causes Estrogen Receptor–Dependent Responses in Female Mice. Environ. Health Perspect. 2007, 115, 1711–1716. [Google Scholar] [CrossRef]
- Souidi, M.; Gueguen, Y.; Linard, C.; Dudoignon, N.; Grison, S.; Baudelin, C.; Marquette, C.; Gourmelon, P.; Aigueperse, J.; Dublineau, I. In Vivo Effects of Chronic Contamination with Depleted Uranium on CYP3A and Associated Nuclear Receptors PXR and CAR in the Rat. Toxicology 2005, 214, 113–122. [Google Scholar] [CrossRef]
- Racine, R.; Grandcolas, L.; Grison, S.; Stefani, J.; Delissen, O.; Gourmelon, P.; Veyssière, G.; Souidi, M. Cholesterol 7alpha-Hydroxylase (CYP7A1) Activity Is Modified after Chronic Ingestion of Depleted Uranium in the Rat. J. Steroid Biochem. Mol. Biol. 2010, 120, 60–66. [Google Scholar] [CrossRef]
- Auvinen, A.; Kurttio, P.; Pekkanen, J.; Pukkala, E.; Ilus, T.; Salonen, L. Uranium and Other Natural Radionuclides in Drinking Water and Risk of Leukemia: A Case-Cohort Study in Finland. Cancer Causes Control 2002, 13, 825–829. [Google Scholar] [CrossRef]
- Canu, I.G.; Jacob, S.; Cardis, E.; Wild, P.; Caër, S.; Auriol, B.; Garsi, J.P.; Tirmarche, M.; Laurier, D. Uranium Carcinogenicity in Humans Might Depend on the Physical and Chemical Nature of Uranium and Its Isotopic Composition: Results from Pilot Epidemiological Study of French Nuclear Workers. Cancer Causes Control 2011, 22, 1563–1573. [Google Scholar] [CrossRef]
- Kurttio, P.; Komulainen, H.; Leino, A.; Salonen, L.; Auvinen, A.; Saha, H. Bone as a Possible Target of Chemical Toxicity of Natural Uranium in Drinking Water. Environ. Health Perspect. 2005, 113, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Danko, B.; Dybczyński, R. Radiochemical Scheme for the Determination of Molybdenum and Uranium in Biological Materials by NAA. J. Radioanal. Nucl. Chem. 2005, 192, 117–129. [Google Scholar] [CrossRef]
- Landsberger, S.; Kapsimalis, R. Comparison of Neutron Activation Analysis Techniques for the Determination of Uranium Concentrations in Geological and Environmental Materials. J. Environ. Radioact. 2013, 117, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.H.; Warwick, P.; Evans, N. Spectrophotometric Determination of Uranium with Arsenazo-III in Perchloric Acid. Chemosphere 2006, 63, 1165–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, M.N.; Homoda, A.M.; Mostafa, G.A.E. First Derivative Spectrophotometric Determination of Uranium(VI) and Vanadium(V) in Natural and Saline Waters and Some Synthetic Matrices Using PAR and Cetylpyridinum Chloride. Anal. Chim. Acta 2001, 436, 223–231. [Google Scholar] [CrossRef]
- Saha, A.; Neogy, S.; Rao, D.R.M.; Deb, S.B.; Saxena, M.K.; Tomar, B.S. Colorimetric and Visual Determination of Ultratrace Uranium Concentrations Based on the Aggregation of Amidoxime Functionalized Gold Nanoparticles. Microchim. Acta 2019, 186, 183. [Google Scholar] [CrossRef]
- Davarani, S.S.H.; Moazami, H.R.; Keshtkar, A.R.; Banitaba, M.H.; Nojavan, S. A Selective Electromembrane Extraction of Uranium (VI) Prior to Its Fluorometric Determination in Water. Anal. Chim. Acta 2013, 783, 74–79. [Google Scholar] [CrossRef]
- Orabi, A.H. Synthesis of a Cellulose Derivative for Enhanced Sorption and Selectivity of Uranium from Phosphate Rocks Prior to Its Fluorometric Determination. Int. J. Environ. Anal. Chem. 2019, 99, 741–766. [Google Scholar] [CrossRef]
- Santos, J.S.; Teixeira, L.S.G.; dos Santos, W.N.L.; Lemos, V.A.; Godoy, J.M.; Ferreira, S.L.C. Uranium Determination Using Atomic Spectrometric Techniques: An Overview. Anal. Chim. Acta 2010, 674, 143–156. [Google Scholar] [CrossRef]
- Santos, J.S.; Teixeira, L.S.G.; Araújo, R.G.O.; Fernandes, A.P.; Korn, M.G.A.; Ferreira, S.L.C. Optimization of the Operating Conditions Using Factorial Designs for Determination of Uranium by Inductively Coupled Plasma Optical Emission Spectrometry. Microchem. J. 2011, 97, 113–117. [Google Scholar] [CrossRef]
- Chandrasekaran, K.; Karunasagar, D.; Arunachalam, J. Dispersive Liquid–Liquid Micro Extraction of Uranium(VI) from Groundwater and Seawater Samples and Determination by Inductively Coupled Plasma–Optical Emission Spectrometry and Flow Injection–Inductively Coupled Plasma Mass Spectrometry. Anal. Methods 2011, 3, 2140–2147. [Google Scholar] [CrossRef]
- Kocot, K.; Pytlakowska, K.; Talik, E.; Krafft, C.; Sitko, R. Sensitive Determination of Uranium Using β-Cyclodextrin Modified Graphene Oxide and X-Ray Fluorescence Techniques: EDXRF and TXRF. Talanta 2022, 246, 123501. [Google Scholar] [CrossRef]
- Tosheva, Z.; Stoyanova, K.; Nikolchev, L. Comparison of Different Methods for Uranium Determination in Water. J. Environ. Radioact. 2004, 72, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.C.Y.; Choi, I.; Mao, X.; Zorba, V.; Lam, O.P.; Shuh, D.K.; Russo, R.E. Isotopic Determination of Uranium in Soil by Laser Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2016, 122, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Misra, N.L.; Dhara, S.; Mudher, K.D.S. Uranium Determination in Seawater by Total Reflection X-Ray Fluorescence Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 1166–1169. [Google Scholar] [CrossRef]
- Esaka, F.; Watanabe, K.; Fukuyama, H.; Onodera, T.; Esaka, K.T.; Magara, M.; Sakurai, S.; Usuda, S. Efficient Isotope Ratio Analysis of Uranium Particles in Swipe Samples by Total-Reflection x-Ray Fluorescence Spectrometry and Secondary Ion Mass Spectrometry. J. Nucl. Sci. Technol. 2004, 41, 1027–1032. [Google Scholar] [CrossRef]
- Tolmachyov, S.Y.; Kuwabara, J.; Noguchi, H. Flow Injection Extraction Chromatography with ICP-MS for Thorium and Uranium Determination in Human Body Fluids. J. Radioanal. Nucl. Chem. 2004, 261, 125–131. [Google Scholar] [CrossRef]
- Bootharajan, M.; Kumar, G.V.S.A.; Sreenivasulu, B.; Senthilvadivu, R.; Garnayak, P.M.; Pandey, A.; Kelkar, A.; Sathe, D.B.; Bhatt, R.B.; Rao, C.V.S.B.; et al. Determination of Uranium and Plutonium in Mixed Oxide Samples by X-Ray Methods and Their Comparison with Potentiometry. Spectrochim. Acta Part B At. Spectrosc. 2022, 194, 106481. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; Ali, M.M.; Attawiya, A.M.Y. PVC Membrane Based Potentiometric Sensors for Uranium Determination. Talanta 2001, 54, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Sharma, J.; Soni, V. Various Electroanalytical Methods for the Determination of Uranium in Different Matrices. Bull. Fac. Pharm. Cairo Univ. 2013, 51, 113–129. [Google Scholar] [CrossRef] [Green Version]
- Peled, Y.; Krent, E.; Tal, N.; Tobias, H.; Mandler, D. Electrochemical Determination of Low Levels of Uranyl by a Vibrating Gold Microelectrode. Anal. Chem. 2015, 87, 768–776. [Google Scholar] [CrossRef]
- Renock, D.; Mueller, M.; Yuan, K.; Ewing, R.C.; Becker, U. The Energetics and Kinetics of Uranyl Reduction on Pyrite, Hematite, and Magnetite Surfaces: A Powder Microelectrode Study. Geochim. Cosmochim. Acta 2013, 118, 56–71. [Google Scholar] [CrossRef]
- Khadro, B.; Jaffrezic-Renault, N. A Miniaturized System for Ultratrace Uranium Analysis in Waters. Procedia Eng. 2010, 5, 1212–1215. [Google Scholar] [CrossRef] [Green Version]
- Korolczuk, M.; Grabarczyk, M.; Rutyna, I. An Adsorptive Stripping Voltammetry Procedure for Ultra-Trace Determination of U(VI) Using Double Accumulation Step on Two Lead-Film Working Electrodes. Talanta 2014, 130, 342–346. [Google Scholar] [CrossRef]
- Gęca, I.; Ochab, M.; Korolczuk, M. Application of a Solid Lead Microelectrode as a New Voltammetric Sensor for Adsorptive Stripping Voltammetry of U(VI). Talanta 2020, 207, 120309. [Google Scholar] [CrossRef] [PubMed]
- Gęca, I.; Ochab, M.; Korolczuk, M. Anodic Stripping Voltammetry of Tl(I) Determination with the Use of a Solid Bismuth Microelectrode. J. Electrochem. Soc. 2020, 167, 086506. [Google Scholar] [CrossRef]
- Gęca, I.; Korolczuk, M. Sensitive Determination of Folic Acid Using a Solid Bismuth Microelectrode by Adsorptive Stripping Voltammetry. Electroanalysis 2020, 32, 496–502. [Google Scholar] [CrossRef]
- Gęca, I.; Ochab, M.; Korolczuk, M. An Adsorptive Stripping Voltammetry of Nickel and Cobalt at a Solid Lead Electrode. Int. J. Environ. Anal. Chem. 2016, 96, 1264–1275. [Google Scholar] [CrossRef]
- Wang, J.; Bian, C.; Tong, J.; Sun, J.; Xia, S. Simultaneous Detection of Copper, Lead and Zinc on Tin Film/Gold Nanoparticles/Gold Microelectrode by Square Wave Stripping Voltammetry. Electroanalysis 2012, 24, 1783–1790. [Google Scholar] [CrossRef]
- Daniele, S.; Bergamin, S. Preparation and Voltammetric Characterisation of Bismuth-Modified Mesoporous Platinum Microelectrodes. Application to the Electrooxidation of Formic Acid. Electrochem. Commun. 2007, 9, 1388–1393. [Google Scholar] [CrossRef]
- Hu, Z.; Heineman, W.R. Oxidation-State Speciation of [ReI(DMPE)3]+/[ReII(DMPE)3]2+ by Voltammetry with a Chemically Modified Microelectrode. Anal. Chem. 2000, 72, 2395–2400. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.C.; Han, H.Z.; Cheng, C.C.; Chen, L.C.; Chang, H.C.; Chen, J.J.J. Modification of Platinum Microelectrode with Molecularly Imprinted Over-Oxidized Polypyrrole for Dopamine Measurement in Rat Striatum. Sensors Actuators B Chem. 2012, 171–172, 93–101. [Google Scholar] [CrossRef]
- Said, N.A.M.; Ogurtsov, V.I.; Twomey, K.; Nagle, L.C.; Herzog, G. Chemically Modified Electrodes for Recessed Microelectrode Array. Procedia Chem. 2016, 20, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Barančok, D.; Cirák, J.; Tomčík, P.; Gmucová, K. Surface Modified Microelectrodes for Selective Electroanalysis of Metal Ions in Environmental Components. Bioelectrochemistry 2002, 55, 153–155. [Google Scholar] [CrossRef]
- Novotný, L.; Navrátil, T.; Sander, S.; Bašová, P. Electrocapillary Activity and Adsorptive Accumulation of U(VI)-Cupferron and U(VI)-Chloranilic Acid Complexes on Mercury Electrode. Electroanalysis 2003, 15, 1687–1692. [Google Scholar] [CrossRef]
- Dimovasilis, P.A.; Prodromidis, M.I. An Electrochemical Sensor for Trace Uranium Determination Based on 6-O-Palmitoyl-l-Ascorbic Acid-Modified Graphite Electrodes. Sensors Actuators B 2011, 156, 689–694. [Google Scholar] [CrossRef]
- Kostaki, V.T.; Florou, A.B.; Prodromidis, M.I. Electrochemically Induced Chemical Sensor Properties in Graphite Screen-Printed Electrodes: The Case of a Chemical Sensor for Uranium. Electrochim. Acta 2011, 56, 8857–8860. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Slope | 0.2415 | nA/nmol L−1 |
Intercept | 0.274 | nA |
r | 0.999 | - |
Linear range | 1–100 | nmol L−1 |
LOD | 0.39 | nmol L−1 |
LOQ | 1.5 | nmol L−1 |
RSD of analysis of 20 nmol L−1 U(VI) (n = 7) | 3.5 | % |
Working Electrode | Method | Linear Range [nmol L−1] | Detection Limit [nmol L−1] | Ref. |
---|---|---|---|---|
Au µE | ASV | 100–10,000 | 1 | [46] |
Powder µE | CV | - | - | [47] |
SPE µE | AdSV | 0.021–0.042 | 0.0021 | [48] |
PbF µE | AdSV | 0.1–5 | 0.031 | [49] |
Pb µE | AdSV | 2–100 | 0.55 | [50] |
Pb-Sn µE | AdSV | 1–100 | 0.39 | [present paper] |
Foreign Ions | Molar Excess of Foreign Ion | Relative Signal of U(VI) |
---|---|---|
Zn(II) | 100 | 0.98 |
Mn(II) | 100 | 1.02 |
Ni(II) | 100 | 0.86 |
Cu(II) | 100 | 0.90 |
Co(II) | 100 | 0.63 |
Fe(III) | 100 | 1.01 |
V(V) | 100 | 0.91 |
Mo(VI) | 5 | 0.81 |
10 | 0.57 | |
Sn(IV) | 100 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gęca, I.; Korolczuk, M. A Novel Eco-Friendly and Highly Sensitive Solid Lead–Tin Microelectrode for Trace U(VI) Determination in Natural Water Samples. Sensors 2023, 23, 2552. https://doi.org/10.3390/s23052552
Gęca I, Korolczuk M. A Novel Eco-Friendly and Highly Sensitive Solid Lead–Tin Microelectrode for Trace U(VI) Determination in Natural Water Samples. Sensors. 2023; 23(5):2552. https://doi.org/10.3390/s23052552
Chicago/Turabian StyleGęca, Iwona, and Mieczyslaw Korolczuk. 2023. "A Novel Eco-Friendly and Highly Sensitive Solid Lead–Tin Microelectrode for Trace U(VI) Determination in Natural Water Samples" Sensors 23, no. 5: 2552. https://doi.org/10.3390/s23052552
APA StyleGęca, I., & Korolczuk, M. (2023). A Novel Eco-Friendly and Highly Sensitive Solid Lead–Tin Microelectrode for Trace U(VI) Determination in Natural Water Samples. Sensors, 23(5), 2552. https://doi.org/10.3390/s23052552