SAR Image Simulations of Ocean Scenes Based on the Improved Facet TSM
Abstract
:1. Introduction
2. Simplified Form of Cutoff Invariant TSM
2.1. Cutoff Invariant TSM
2.2. Simplification of CITSM
3. Facet-based Scattering Model
3.1. Discussion of the Facet Size
3.2. Facet-Based TSM
4. SAR Image Simulations of Ocean Scenes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graziano, M.D.; Grasso, M.; Errico, M.D’. Performance analysis of ship wake detection on Sentinel-1 SAR images. Remote Sens. 2017, 9, 1107. [Google Scholar] [CrossRef] [Green Version]
- Fuks, I.M.; Voronovich, A.G. Wave diffraction by rough interfaces in an arbitrary plane-layered medium. Waves Random Media 2000, 10, 253–272. [Google Scholar] [CrossRef]
- Barrick, D. Rough surface scattering based on the specular point theory. IEEE Trans. Antennas Propag. 1968, 16, 449–454. [Google Scholar] [CrossRef]
- Voronovich, A. Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces. Waves Random Media 1994, 4, 337–368. [Google Scholar] [CrossRef]
- Fung, A.K.; Liu, W.Y.; Chen, K.S.; Tsay, M.K. An improved IEM model for bistatic scattering from rough surfaces. J. Electromagn. Waves Appl. 2002, 16, 689–702. [Google Scholar] [CrossRef]
- Qiao, T.; Tsang, L.; Vandemark, D.; Yueh, S.H.; Chapron, B. Sea surface radar scattering at L-band based on numerical solution of Maxwell’s equations in 3-D (NMM3D). IEEE Trans. Geosci. Remote Sens. 2018, 56, 3137–3147. [Google Scholar] [CrossRef]
- Lai, Z.H.; Kiang, J.F.; Mittra, R. A domain decomposition finite difference time domain (FDTD) method for scattering problem from very large rough surfaces. IEEE Trans. Antennas Propag. 2015, 63, 4468–4476. [Google Scholar] [CrossRef]
- Wang, R.; Guo, L.; Zhang, Z. Scattering from contaminated rough sea surface by iterative physical optics model. IEEE Geosci. Remote Sens. Lett. 2016, 13, 500–504. [Google Scholar] [CrossRef]
- Xu, F.; Jin, Y.Q. Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface. IEEE Trans. Antennas Propag. 2009, 57, 1495–1505. [Google Scholar] [CrossRef]
- Du, Y.; Yin, J.; Tan, S.; Wang, J.; Yang, J.Y. A numerical study of roughness scale effects on ocean radar scattering using the second-order SSA and the moment method. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6874–6887. [Google Scholar] [CrossRef]
- Franceschetti, G.; Migliaccio, M.; Riccio, D. On ocean SAR raw signal simulation. IEEE Trans. Geosci. Remote Sens. 1998, 36, 84–100. [Google Scholar] [CrossRef]
- Franceschetti, G.; Iodice, A.; Riccio, D.; Ruello, G.; Siviero, R. SAR raw signal simulation of oil slicks in ocean environments. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1935–1949. [Google Scholar] [CrossRef]
- Arnold-Bos, A.; Khenchaf, A.; Martin, A. Bistatic radar imaging of the marine environment—Part I: Theoretical background. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3372–3383. [Google Scholar] [CrossRef]
- Arnold-Bos, A.; Khenchaf, A.; Martin, A. Bistatic radar imaging of the marine environment—Part II: Simulation and results analysis. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3384–3396. [Google Scholar] [CrossRef]
- Hui, C.; Min, Z.; Zhao, Y.W.; Luo, W. An efficient slope-deterministic facet model for SAR imagery simulation of marine scene. IEEE Trans. Antennas Propag. 2010, 58, 3751–3756. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Z.S.; Su, X. Electromagnetic scattering from deterministic sea surface with oceanic internal waves via the variable-coefficient gardener model. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2017, 11, 355–366. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, H.; Yin, H.C. Facet-based investigation on EM scattering from electrically large sea surface with two-scale profiles: Theoretical model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1967–1975. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Fan, W.; Nie, D. Facet-based investigation on microwave backscattering from sea surface with breaking waves: Sea spikes and SAR imaging. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2313–2325. [Google Scholar] [CrossRef]
- Wei, Y.; Guo, L.; Li, J. Numerical simulation and analysis of the spiky sea clutter from the sea surface with breaking waves. IEEE Trans. Antennas Propag. 2015, 63, 4983–4994. [Google Scholar] [CrossRef]
- Linghu, L.; Wu, J.; Wu, Z.; Jeon, G.; Wang, X.L. GPU-accelerated computation of time-evolving electromagnetic backscattering field from large dynamic sea surfaces. IEEE Trans. Industr. Inform. 2019, 16, 3187–3197. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Wei, P.; Jiang, W. An improvement on SSA method for EM scattering from electrically large rough sea surface. IEEE Trans. Geosci. Remote Sens. Lett. 2016, 13, 1144–1148. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Zhao, Y.; Jiang, W. Efficient numerical full-polarized facet-based model for EM scattering from rough sea surface within a wide frequency range. Remote Sens. 2019, 11, 75. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Zhao, Z.; Zhao, Y.; Huang, Y.; Nie, Z. A Modified model for electromagnetic scattering of sea surface covered with crest foam and static foam. Remote Sens. 2020, 12, 788. [Google Scholar] [CrossRef] [Green Version]
- Soriano, G.; Guérin, C.A. A cutoff invariant two-scale model in electromagnetic scattering from sea surfaces. IEEE Geosci. Remote Sens. Lett. 2008, 5, 199–203. [Google Scholar] [CrossRef]
- Awada, A.; Ayari, M.; Khenchaf, A.; Coatanhay, A. Bistatic scattering from an anisotropic sea surface: Numerical comparison between the first-order SSA and the TSM models. Waves Random Complex Media 2006, 16, 383–394. [Google Scholar] [CrossRef]
- Wang, T.; Tong, C. An improved facet-based TSM for electromagnetic scattering from ocean surface. IEEE Geosci. Remote Sens. 2018, 15, 644–648. [Google Scholar] [CrossRef]
- Voronovich, A.G.; Zavorotny, V.U. Theoretical model for scattering of radar signals in Ku- and C- bands from a rough sea surface with breaking waves. Waves Random Complex Media 2001, 11, 247–269. [Google Scholar] [CrossRef]
- Elfouhaily, T.; Chapron, B.; Katsaros, K. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. 1997, 102, 15781–15796. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.R.; Elfouhaily, T.; Garrison, J.L. An improved geometrical optics model for bistatic GPS scattering from the ocean surface. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2810–2821. [Google Scholar] [CrossRef]
- Tsang, L.; Kong, J.A. Scattering of Electromagnetic Waves: Advanced Topics; Wiley: New York, NY, USA, 2001; pp. 83–90. [Google Scholar]
- Cox, C.; Munk, W.H. Statistics of the sea surface derived from sun glitter. J. Mar. Res. 1954, 13, 198–227. [Google Scholar]
- Boisot, O.; Nouguier, F.; Chapron, B.; Guerin, C.A. The GO4 model in near-nadir microwave scattering from the sea surface. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5889–5900. [Google Scholar] [CrossRef] [Green Version]
- Martino, G.D.; Iodice, A.; Riccio, D.; Ruello, G. Physical models for SAR speckle simulation. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 5782–5785. [Google Scholar] [CrossRef] [Green Version]
- Martino, G.D.; Iodice, A.; Riccio, D.; Ruello, G. Equivalent number of scatterers for SAR speckle modeling. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2555–2564. [Google Scholar] [CrossRef]
- Yue, D.X.; Xu, F.; Frery, A.C.; Jin, Y.Q. A generalized gaussian coherent scatterer model for correlated SAR texture. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2947–2964. [Google Scholar] [CrossRef]
- Oumansour, K.; Wang, Y.; Saillard, J. Multifrequency SAR observation of a ship wake. IET Radar Sonar Navig. 1996, 143, 275–280. [Google Scholar] [CrossRef]
- Tings, B.; Velotto, D. Comparison of ship wake detectability on C-band and X-band SAR. Int. J. Remote Sens. 2018, 39, 4451–4468. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Carrier frequency f (GHz) | 14 |
Pulsed duration (us) | 2 |
Bandwidth (MHz) | 200 |
Radar velocity v (m/s) | 300 |
Azimuth antenna dimension L (m) | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Li, X.; Wang, Y. SAR Image Simulations of Ocean Scenes Based on the Improved Facet TSM. Sensors 2023, 23, 2564. https://doi.org/10.3390/s23052564
Wang T, Li X, Wang Y. SAR Image Simulations of Ocean Scenes Based on the Improved Facet TSM. Sensors. 2023; 23(5):2564. https://doi.org/10.3390/s23052564
Chicago/Turabian StyleWang, Tong, Ximin Li, and Yijin Wang. 2023. "SAR Image Simulations of Ocean Scenes Based on the Improved Facet TSM" Sensors 23, no. 5: 2564. https://doi.org/10.3390/s23052564
APA StyleWang, T., Li, X., & Wang, Y. (2023). SAR Image Simulations of Ocean Scenes Based on the Improved Facet TSM. Sensors, 23(5), 2564. https://doi.org/10.3390/s23052564