Modern Synergetic Neural Network for Synthetic Aperture Radar Target Recognition
Abstract
:1. Introduction
2. Background
2.1. SNN Overview
2.2. Relation of Linear AE Weights
3. MSNN
3.1. Stacked AE for Prototype Learning
3.2. Convolutional AE for Prototype Learning
3.3. MSNN Model
4. Experiments
4.1. MSTAR Dataset Configuration
4.2. MSNN Configuration
4.3. Recognition Results Analysis
4.4. Prototype Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cong, Y.; Chen, B.; Liu, H.; Jiu, B. Nonparametric Bayesian Attributed Scattering Center Extraction for Synthetic Aperture Radar Targets. IEEE Trans. Signal Process. 2016, 64, 4723–4736. [Google Scholar] [CrossRef]
- Gao, F.; Mei, J.; Sun, J.; Wang, J.; Yang, E.; Hussain, A. Target detection and recognition in SAR imagery based on KFDA. J. Syst. Eng. Electron. 2015, 26, 720–731. [Google Scholar]
- Pei, J.; Huang, Y.; Huo, W.; Wu, J.; Yang, J.; Yang, H. SAR Imagery Feature Extraction Using 2DPCA-Based Two-Dimensional Neighborhood Virtual Points Discriminant Embedding. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2206–2214. [Google Scholar] [CrossRef]
- Song, S.; Xu, B.; Yang, J. SAR target recognition via supervised discriminative dictionary learning and sparse representation of the SAR-HOG feature. Remote Sens. 2016, 8, 683. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.C.; Xu, Y.L. SAR automatic target recognition based on a visual cortical system. In Proceedings of the Proceedings of the 2013 6th International Congress on Image and Signal Processing (CISP 2013), Hangzhou, China, 16–18 December 2013; Volume 2, pp. 778–782. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Kang, M.; Ji, K.; Leng, X.; Xing, X.; Zou, H. Synthetic aperture radar target recognition with feature fusion based on a stacked autoencoder. Sensors 2017, 17, 192. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.; Zhang, L.; Wang, L. Stacked Sparse Autoencoder Modeling Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-Ground Biomass. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5569–5582. [Google Scholar] [CrossRef]
- Chen, X.; Deng, J. A Robust Polarmetric SAR Terrain Classification Based on Sparse Deep Autoencoder Model Combined with Wavelet Kernel-Based Classifier. IEEE Access 2020, 8, 64810–64819. [Google Scholar] [CrossRef]
- Wang, J.; Qin, C.; Yang, K.; Ren, P. A SAR Target Recognition Algorithm Based on Guided Filter Reconstruction and Denoising Sparse Autoencoder. Binggong Xuebao/Acta Armamentarii 2020, 41, 1861–1870. [Google Scholar] [CrossRef]
- Geng, J.; Fan, J.; Wang, H.; Ma, X.; Li, B.; Chen, F. High-Resolution SAR Image Classification via Deep Convolutional Autoencoders. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2351–2355. [Google Scholar] [CrossRef]
- Guo, J.; Wang, L.; Zhu, D.; Hu, C. Compact convolutional autoencoder for SAR target recognition. IET Radar Sonar Navig. 2020, 14, 967–972. [Google Scholar] [CrossRef]
- Seyfioǧlu, M.S.; Özbayoǧlu, A.M.; Gürbüz, S.Z. Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1709–1723. [Google Scholar] [CrossRef]
- Sun, Z.; Xue, L.; Xu, Y. Recognition of SAR target based on multilayer auto-encoder and SNN. Int. J. Innov. Comput. Inf. Control 2013, 9, 4331–4341. [Google Scholar]
- Amiri, M.; Davande, H.; Sadeghian, A.; Chartier, S. Feedback associative memory based on a new hybrid model of generalized regression and self-feedback neural networks. Neural Netw. 2010, 23, 892–904. [Google Scholar] [CrossRef]
- Chartier, S.; Proulx, R. NDRAM: Nonlinear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated patterns. IEEE Trans. Neural Netw. 2005, 16, 1393–1400. [Google Scholar] [CrossRef]
- Liu, J.; Gong, M.; He, H. Deep associative neural network for associative memory based on unsupervised representation learning. Neural Netw. 2019, 113, 41–53. [Google Scholar] [CrossRef]
- Haken, H. Synergetic Computers and Cognition: A Top-Down Approach to Neural Nets; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Wang, H.; Yu, Y.; Wen, G.; Zhang, S.; Yu, J. Global stability analysis of fractional-order Hopfield neural networks with time delay. Neurocomputing 2015, 154, 15–23. [Google Scholar] [CrossRef]
- Wu, A.; Zeng, Z.; Song, X. Global Mittag-Leffler stabilization of fractional-order bidirectional associative memory neural networks. Neurocomputing 2016, 177, 489–496. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, J. Global stabilization of fractional-order bidirectional associative memory neural networks with mixed time delays via adaptive feedback control. Int. J. Comput. Math. 2020, 97, 2074–2090. [Google Scholar] [CrossRef]
- Zhao, T.; Tang, L.H.; Ip, H.H.; Qi, F. On relevance feedback and similarity measure for image retrieval with synergetic neural nets. Neurocomputing 2003, 51, 105–124. [Google Scholar] [CrossRef]
- Wong, W.M.; Loo, C.K.; Tan, A.W. Parameter controlled chaotic synergetic neural network for face recognition. In Proceedings of the 2010 IEEE Conference on Cybernetics and Intelligent Systems (CIS 2010), Singapore, 28–30 June 2010; pp. 58–63. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, Y.; Shi, X. A parallel SRL algorithm based on synergetic neural network. J. Converg. Inf. Technol. 2012, 7, 1–8. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, Y.; Shi, X. A synergetic semantic role labeling model with the introduction of fluctuating force accompanied with word sense information. Intell. Data Anal. 2017, 21, 5–18. [Google Scholar] [CrossRef]
- Haken, H.P. Synergetics. IEEE Circuits Devices Mag. 1988, 4, 3–7. [Google Scholar] [CrossRef]
- Baldi, P.; Hornik, K. Neural networks and principal component analysis: Learning from examples without local minima. Neural Netw. 1989, 2, 53–58. [Google Scholar] [CrossRef]
- Ross, T.D.; Mossing, J.C. MSTAR evaluation methodology. In Proceedings of the AeroSense’99, Orlando, FL, USA, 5–9 April 1999. [Google Scholar] [CrossRef]
- Moore, E.H. On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 1920, 26, 394–395. [Google Scholar]
- Penrose, R. A generalized inverse for matrices. Math. Proc. Camb. Philos. Soc. 1955, 51, 406–413. [Google Scholar] [CrossRef] [Green Version]
- Van Den Oord, A.; Vinyals, O.; Kavukcuoglu, K. Neural discrete representation learning. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6307–6316. [Google Scholar]
- Razavi, A.; van den Oord, A.; Vinyals, O. Generating diverse high-fidelity images with VQ-VAE-2. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Volume 32. [Google Scholar]
- Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. In Proceedings of the 7th International Conference on Learning Representations (ICLR 2019), New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Smith, L.N.; Topin, N. Super-convergence: Very fast training of neural networks using large learning rates. In Proceedings of the SPIE Defense + Commercial Sensing, Baltimore, MD, USA, 14–18 April 2019; p. 36. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, H.; Xu, F.; Jin, Y.Q. Target Classification Using the Deep Convolutional Networks for SAR Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4806–4817. [Google Scholar] [CrossRef]
- Pei, J.; Huang, Y.; Huo, W.; Zhang, Y.; Yang, J.; Yeo, T.S. SAR automatic target recognition based on multiview deep learning framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2196–2210. [Google Scholar] [CrossRef]
- Zhong, C.; Mu, X.; He, X.; Wang, J.; Zhu, M. SAR Target Image Classification Based on Transfer Learning and Model Compression. IEEE Geosci. Remote Sens. Lett. 2019, 16. [Google Scholar] [CrossRef]
- Shang, R.; Wang, J.; Jiao, L.; Stolkin, R.; Hou, B.; Li, Y. SAR Targets Classification Based on Deep Memory Convolution Neural Networks and Transfer Parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2834–2846. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, W.; Leung, R. SAR target classification based on radar image luminance analysis by deep learning. IEEE Sens. Lett. 2020, 4, 7000804. [Google Scholar] [CrossRef]
Class | Type | Train Num. | Test Num. |
---|---|---|---|
2S1 | b01 | 299 | 274 |
BMP2 | 9563 | 233 | 195 |
BRDM2 | E-71 | 298 | 274 |
BTR60 | k10yt7532 | 256 | 195 |
BTR70 | C71 | 233 | 196 |
D7 | 92v13015 | 299 | 274 |
T62 | A51 | 299 | 273 |
T72 | 132 | 232 | 196 |
ZIL131 | E12 | 299 | 274 |
ZSU234 | d08 | 299 | 274 |
(a) , | ||||||
---|---|---|---|---|---|---|
0 | 8 | 16 | 32 | 64 | ||
32 | 96.99 | 97.66 | 97.63 | 98.26 | ||
64 | 96.80 | 97.02 | 98.29 | 96.50 | ||
128 | 97.51 | 96.51 | 96.99 | 96.67 | 96.94 | |
256 | 98.11 | 98.13 | 96.70 | 98.21 | ||
512 | 97.53 | 97.39 | 97.41 | 97.87 | ||
(b) , | ||||||
0 | 8 | 16 | 32 | 64 | ||
32 | 96.37 | 97.18 | 97.74 | 98.18 | ||
64 | 98.70 | 96.68 | 97.50 | 97.69 | ||
128 | 97.66 | 96.99 | 97.09 | 96.78 | 98.35 | |
256 | 97.33 | 98.44 | 97.99 | 98.09 | ||
512 | 98.08 | 97.67 | 96.69 | 97.61 | ||
(c) , | ||||||
0 | 8 | 16 | 32 | 64 | ||
32 | 97.63 | 98.45 | 97.20 | 98.27 | ||
64 | 97.94 | 97.68 | 98.57 | 97.15 | ||
128 | 97.80 | 98.20 | 98.33 | 97.52 | 98.31 | |
256 | 98.49 | 97.94 | 97.10 | 98.02 | ||
512 | 97.34 | 98.06 | 97.81 | 98.11 | ||
(d) , | ||||||
0 | 8 | 16 | 32 | 64 | ||
32 | 98.35 | 98.47 | 98.15 | 98.43 | ||
64 | 98.72 | 97.98 | 98.60 | 98.43 | ||
128 | 98.00 | 98.43 | 98.52 | 98.60 | 98.64 | |
256 | 98.52 | 98.93 | 98.52 | 98.27 | ||
512 | 98.35 | 98.15 | 98.56 | 98.64 |
Method | Acc. (%) |
---|---|
A-ConvNet [36] | 96.49 |
2-VDCNN [37] | 97.81 |
3-VDCNN [37] | 98.17 |
Pruned-70 [38] | 98.39 |
CCAE [13] | 98.59 |
MSNN (proposed) | 98.931 |
A-ConvNet with data augmentation [36] | 99.13 |
DeepMemory with data augmentation [39] | 99.71 |
LADL with data denoising [40] | 99.99 1 |
Class | 2S1 | BMP2 | BRD M2 | BTR 60 | BTR 70 | D7 | T62 | T72 | ZIL 131 | ZSU 234 | Acc. (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
2S1 | 263 | 0 | 5 | 0 | 0 | 0 | 5 | 0 | 1 | 0 | 95.99 |
BMP2 | 0 | 196 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
BRDM2 | 2 | 1 | 266 | 1 | 2 | 0 | 0 | 0 | 4 | 0 | 97.08 |
BTR60 | 0 | 0 | 4 | 191 | 0 | 0 | 0 | 0 | 0 | 0 | 97.95 |
BTR70 | 0 | 0 | 0 | 0 | 196 | 0 | 0 | 0 | 0 | 0 | 100 |
D7 | 0 | 1 | 1 | 0 | 0 | 272 | 0 | 0 | 0 | 0 | 99.27 |
T62 | 0 | 0 | 0 | 0 | 0 | 0 | 273 | 0 | 0 | 0 | 100 |
T72 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 195 | 0 | 0 | 99.49 |
ZIL131 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 274 | 0 | 100 |
ZSU234 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 274 | 100 |
Total (%) | 98.93 |
Method | Time (s) |
---|---|
LADL | 2.7 |
A-ConvNet | 3.1 |
CCAE | 4.3 |
MSNN (proposed) | 4.6 |
DeepMemory | 9.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Li, H.; Ma, L. Modern Synergetic Neural Network for Synthetic Aperture Radar Target Recognition. Sensors 2023, 23, 2820. https://doi.org/10.3390/s23052820
Wang Z, Li H, Ma L. Modern Synergetic Neural Network for Synthetic Aperture Radar Target Recognition. Sensors. 2023; 23(5):2820. https://doi.org/10.3390/s23052820
Chicago/Turabian StyleWang, Zihao, Haifeng Li, and Lin Ma. 2023. "Modern Synergetic Neural Network for Synthetic Aperture Radar Target Recognition" Sensors 23, no. 5: 2820. https://doi.org/10.3390/s23052820
APA StyleWang, Z., Li, H., & Ma, L. (2023). Modern Synergetic Neural Network for Synthetic Aperture Radar Target Recognition. Sensors, 23(5), 2820. https://doi.org/10.3390/s23052820