Design and Evaluation of Capacitive Smart Transducer for a Forestry Crane Gripper
Abstract
:1. Introduction
1.1. Motivation and Related Work
1.2. Contribution
2. System Description
2.1. Sensing Principle
2.2. Gripper Design and Sensor Placement
2.3. System Overview
2.3.1. Design and Realization of STIM
2.3.2. Wireless Network
2.3.3. Grasp Detection Algorithm
Algorithm 1: Grasp Detection Algorithm |
3. Experimental Results
3.1. Grasping Experiments
- Proper grasp: The log is firmly grasped by the claws, the grippers are fully closed and the sensors are under tight contact with the log. When the crane is moving, the log does not experience any shift in its grasped position.
- Corner grasp: The log is held by the claws near its end, and is only partially held by the claw.
- Incomplete grasp: The claws are not closed to the maximum possible extent, hence the log is not held firmly by the claw.
3.2. Grasp Detection Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roblek, V.; Meško, M.; Krapež, A. A Complex View of Industry 4.0. SAGE Open 2016, 6, 2158244016653987. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Aguiar, A.S.; dos Santos, F.N.; Cunha, J.B.; Sobreira, H.; Sousa, A.J. Localization and Mapping for Robots in Agriculture and Forestry: A Survey. Robotics 2020, 9, 97. [Google Scholar] [CrossRef]
- Chen, S.W.; Nardari, G.V.; Lee, E.S.; Qu, C.; Liu, X.; Romero, R.A.F.; Kumar, V. SLOAM: Semantic Lidar Odometry and Mapping for Forest Inventory. IEEE Robot. Autom. Lett. 2020, 5, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Emmi, E.; Devy, M. A hybrid representation of the environment to improve autonomous navigation of mobile robots in agriculture. Precis. Agric. 2021, 22, 524–549. [Google Scholar] [CrossRef]
- Hamaza, S.; Farinha, A.; Nguyen, H.N.; Kovac, M. Sensor Delivery in Forests with Aerial Robots: A New Paradigm for Environmental Monitoring. 2020. Available online: https://plus.empa.ch/images/2020-11-02-Drohnen/3-Sensor%20Delivery%20paper.pdf (accessed on 24 February 2023).
- Du, G.; Wang, K.; Lian, S.; Zhao, K. Vision-based robotic grasping from object localization, object pose estimation to grasp estimation for parallel grippers: A review. Artif. Intell. Rev. 2020, 54, 1677–1734. [Google Scholar] [CrossRef]
- Ren, Y.; Sun, H.; Tang, Y.; Wang, S. Vision Based Object Grasping of Robotic Manipulator. In Proceedings of the 2018 24th International Conference on Automation and Computing (ICAC), Tyne, UK, 6–7 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Yue, Y.; Yang, C.; Zhang, J.; Wen, M.; Wu, Z.; Zhang, H.; Wang, D. Day and Night Collaborative Dynamic Mapping in Unstructured Environment Based on Multimodal Sensors. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 2981–2987. [Google Scholar] [CrossRef]
- Allen, P.; Miller, A.; Oh, P.; Leibowitz, B. Integration of Vision, Force and Tactile Sensing for Grasping. Int. J. Intell. Mach. 1999, 4, 129–149. [Google Scholar]
- Cui, S.; Wang, R.; Wei, J.; Hu, J.; Wang, S. Self-Attention Based Visual-Tactile Fusion Learning for Predicting Grasp Outcomes. IEEE Robot. Autom. Lett. 2020, 5, 5827–5834. [Google Scholar] [CrossRef]
- Li, J.; Dong, S.; Adelson, E. Slip Detection with Combined Tactile and Visual Information. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QC, Australia, 21–25 May 2018; pp. 7772–7777. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, M.; Lopes, P.; Lourenço, J.; Rocha, R.P.; Giliberto, L.; de Almeida, A.T.; Majidi, C. Autonomous Selection of Closing Posture of a Robotic Hand Through Embodied Soft Matter Capacitive Sensors. IEEE Sens. J. 2017, 17, 5669–5677. [Google Scholar] [CrossRef]
- Schmitz, A.; Maiolino, P.; Maggiali, M.; Natale, L.; Cannata, G.; Metta, G. Methods and Technologies for the Implementation of Large-Scale Robot Tactile Sensors. IEEE Trans. Robot. 2011, 27, 389–400. [Google Scholar] [CrossRef]
- Tomo, T.P.; Schmitz, A.; Wong, W.K.; Kristanto, H.; Somlor, S.; Hwang, J.; Jamone, L.; Sugano, S. Covering a Robot Fingertip With uSkin: A Soft Electronic Skin with Distributed 3-Axis Force Sensitive Elements for Robot Hands. IEEE Robot. Autom. Lett. 2018, 3, 124–131. [Google Scholar] [CrossRef]
- Schmitz, A.; Maggiali, M.; Natale, L.; Bonino, B.; Metta, G. A tactile sensor for the fingertips of the humanoid robot iCub. In Proceedings of the Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ, Taipei, Taiwan, 18–22 October 2010; pp. 2212–2217. [Google Scholar] [CrossRef]
- Kaboli, M.; Cheng, G. Robust Tactile Descriptors for Descriminating Objects From Textural Properties via Artificial Robotic Skin. IEEE Trans. Robot. 2018, 34, 985–1003. [Google Scholar] [CrossRef]
- Dai, Y.; Gao, S. A Flexible Multi-Functional Smart Skin for Force, Touch Position, Proximity, and Humidity Sensing for Humanoid Robots. IEEE Sens. J. 2021, 21, 26355–26363. [Google Scholar] [CrossRef]
- Duchaine, V. Why Tactile Intelligence Is the Future of Robotic Grasping. IEEE Spectrum. 2016. Available online: https://spectrum.ieee.org/why-tactile-intelligence-is-the-future-of-robotic-grasping (accessed on 24 February 2023).
- Rocha, R.; Lopes, P.; de Almeida, A.T.; Tavakoli, M.; Majidi, C. Soft-matter sensor for proximity, tactile and pressure detection. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24– September 1 October 2017; pp. 3734–3738. [Google Scholar] [CrossRef]
- Le, T.H.L.; Maslyczyk, A.; Roberge, J.P.; Duchaine, V. A Highly Sensitive Multimodal Capacitive Tactile Sensor. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Dong, S.; Adelson, E.H. GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force. Sensors 2017, 17, 2762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costanzo, M.; De Maria, G.; Natale, C.; Pirozzi, S. Design and Calibration of a Force/Tactile Sensor for Dexterous Manipulation. Sensors 2019, 19, 966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.; Zhang, H.; Thomas, U. Capacitive Proximity Sensor Skin for Contactless Material Detection. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 7179–7184. [Google Scholar] [CrossRef]
- Navarro, S.E.; Koch, S.; Hein, B. 3D Contour Following for a Cylindrical End-Effector Using Capacitive Proximity Sensors. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016. [Google Scholar] [CrossRef]
- Tsuji, S.; Kohama, T. Proximity and Contact Sensor for Human Cooperative Robot by Combining Time-of-Flight and Self-Capacitance Sensors. IEEE Sens. J. 2020, 20, 5519–5526. [Google Scholar] [CrossRef]
- M’Colo, K.E.; Luong, B.; Crosnier, A.; Néel, C.; Fraisse, P. Obstacle Avoidance using a Capacitive Skin for Safe Human-Robot Interaction. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; pp. 6742–6747. [Google Scholar] [CrossRef]
- Hera, P.L.; Morales, D.O. What Do We Observe When We Equip a Forestry Crane with Motion Sensors? Croat. J. For. Eng. J. Theory Appl. For. Eng. 2019, 40, 259–280. [Google Scholar] [CrossRef]
- Dvořák, J.; Malkovský, Z.; Macků, J. Influence of human factor on the time of work stages of harvesters and crane-equipped forwarders. J. For. Sci. 2018, 54, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Bergerman, M. Robotics in Agriculture and Forestry. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1463–1492. [Google Scholar]
- Andersson, J.; Bodin, K.; Lindmark, D.; Servin, M.; Wallin, E. Reinforcement Learning Control of a Forestry Crane Manipulator. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 2121–2126. [Google Scholar] [CrossRef]
- Grudziński, M.; Marchewka, L.; Pajor, M.; Ziętek, R. Stereovision Tracking System for Monitoring Loader Crane Tip Position. IEEE Access 2020, 8, 223346–223358. [Google Scholar] [CrossRef]
- Nurmi, J.; Mattila, J. Global Energy-Optimal Redundancy Resolution of Hydraulic Manipulators: Experimental Results for a Forestry Manipulator. Energies 2017, 10, 647. [Google Scholar] [CrossRef] [Green Version]
- Ortiz Morales, D.; Westerberg, S.; La Hera, P.X.; Mettin, U.; Freidovich, L.; Shiriaev, A.S. Increasing the Level of Automation in the Forestry Logging Process with Crane Trajectory Planning and Control. J. Field Robot. 2014, 31, 343–363. [Google Scholar] [CrossRef]
- Shao, L.; Chen, X.; Milne, B.; Guo, P. A Novel Tree Trunk Recognition Approach for Forestry Harvesting Robot. In Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, 9–11 June 2014. [Google Scholar]
- Park, Y.; Shiriaev, A.; Westerberg, S.; Lee, S. 3D Log Recognition and Pose Estimation for Robotic Forestry Machine. In Proceedings of the 2011 International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011. [Google Scholar]
- Westerberg, S. Semi-Automating Forestry Machines Motion Planning, System Integration, and Human-Machine Interaction. Ph.D. Thesis, Umeå Universitet, Umea, Sweden, 2017. [Google Scholar]
- Weiss, S.; Ainetter, S.; Arneitz, F.; Perez, D.A.; Dhakate, R.; Fraundorfer, F.; Gietler, H.; Gubensak, W.; Ferreira, M.M.D.R.; Stetco, C.; et al. Automated Log Ordering through Robotic Grasper. In Proceedings of the Austrian Computer Vision and Robotics Workshop, Vienna, Austria, 17–18 September 2020. [Google Scholar] [CrossRef]
- Gietler, H.; Stetco, C.; Zangl, H. Scalable Retrofit Angular Position Sensor System. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Faller, L.M.; Stetco, C.; Zangl, H. Design of a Novel Gripper System with 3D- and Inkjet-printed Multimodal Sensors for Automated Grasping of a Forestry Robot. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; pp. 5620–5627. [Google Scholar] [CrossRef]
- Gietler, H.; Böhm, C.; Ainetter, S.; Schöffmann, C.; Fraundorfer, F.; Weiss, S.; Zangl, H. Forestry Crane Automation using Learning-based Visual Grasping Point Prediction. In Proceedings of the 2022 IEEE Sensors Applications Symposium (SAS), Sundsvall, Sweden, 1–3 August 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Analog Devices. CapTouch Programmable Controller for Single-Electrode Capacitance Sensors. 2015. Available online: https://www.analog.com/en/products/ad7147.html (accessed on 24 February 2023).
- Nordic Semiconductor. nRF52832 Product Specification. 2017. Available online: https://infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct_nrf52%2Fstruct%2Fnrf52832_ps.html (accessed on 24 February 2023).
- Texas Instruments. BQ25570 Nano Power Boost Charger and Buck Converter for Energy Harvester Powered Applications. 2019. Available online: https://www.ti.com/lit/ds/symlink/bq25570.pdf (accessed on 24 February 2023).
- IEEE. IEEE Standard for a Smart Transducer Interface for Sensors and Actuators—Common Functions, Communication Protocols, and Transducer Electronic Data Sheet (TEDS) Formats. 2007. Available online: https://ieeexplore.ieee.org/document/4338161 (accessed on 24 February 2023).
- Mitterer, T.; Gietler, H.; Schöffmann, C.; Zangl, H. A Dynamic Sensor Interpreter for Robotic Systems. 2021. Available online: https://www.aau.at/wp-content/uploads/2021/08/arw21_teds.pdf (accessed on 24 February 2023).
- National Instruments. PXIe, ±60 V, ±3 A (DC)/±10 A (Pulsed) Precision System PXI Source Measure Unit. 2022. Available online: https://www.ni.com/en-my/shop/hardware/products/pxi-source-measure-unit.html (accessed on 24 February 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anandan, N.; Arronde Pérez, D.; Mitterer, T.; Zangl, H. Design and Evaluation of Capacitive Smart Transducer for a Forestry Crane Gripper. Sensors 2023, 23, 2747. https://doi.org/10.3390/s23052747
Anandan N, Arronde Pérez D, Mitterer T, Zangl H. Design and Evaluation of Capacitive Smart Transducer for a Forestry Crane Gripper. Sensors. 2023; 23(5):2747. https://doi.org/10.3390/s23052747
Chicago/Turabian StyleAnandan, Narendiran, Dailys Arronde Pérez, Tobias Mitterer, and Hubert Zangl. 2023. "Design and Evaluation of Capacitive Smart Transducer for a Forestry Crane Gripper" Sensors 23, no. 5: 2747. https://doi.org/10.3390/s23052747
APA StyleAnandan, N., Arronde Pérez, D., Mitterer, T., & Zangl, H. (2023). Design and Evaluation of Capacitive Smart Transducer for a Forestry Crane Gripper. Sensors, 23(5), 2747. https://doi.org/10.3390/s23052747