Data-Driven Machine Learning Calibration Propagation in A Hybrid Sensor Network for Air Quality Monitoring
Abstract
:1. Introduction
1.1. Related Work
1.2. Objective and Contributions of the Study
2. Materials and Methods
2.1. Measurement Devices
2.2. Hybrid Sensor Network
2.3. The Initial Calibration
2.4. The Concept of Calibration Propagation
3. Results and Discussion of the Calibration Propagation Evaluation
3.1. February Results
3.2. May Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The United Nations Human Settlements Programme (UN-Habitat), World Cities Report 2022. Available online: https://unhabitat.org/sites/default/files/2022/06/wcr_2022.pdf (accessed on 23 December 2022).
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe OJ L 152, 11.6.2008. pp. 1–44. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0050 (accessed on 23 December 2022).
- Department of Ecology, State of Washington. Air Monitoring Site Selection and Installation Procedure. Available online: https://apps.ecology.wa.gov/publications/documents/1602021.pdf (accessed on 23 December 2022).
- Greater London Authority, Guide for Monitoring Air Quality in London. Available online: https://www.london.gov.uk/sites/default/files/air_quality_monitoring_guidance_january_2018.pdf (accessed on 23 December 2022).
- Johnston, S.J.; Basford, P.J.; Bulot, F.M.J.; Apetroaie-Cristea, M.; Easton, N.H.C.; Davenport, C.; Foster, G.L.; Loxham, M.; Morris, A.K.R.; Cox, S.J. City Scale Particulate Matter Monitoring Using LoRaWAN Based Air Quality IoT Devices. Sensors 2019, 19, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, P.; Castell, N.; Vogt, M.; Dauge, F.R.; Lahoz, W.A.; Bartonova, A. Mapping Urban Air Quality in near Real-Time Using Observations from Low-Cost Sensors and Model Information. Environ. Int. 2017, 106, 234–247. [Google Scholar] [CrossRef]
- Popoola, O.A.M.; Carruthers, D.; Lad, C.; Bright, V.B.; Mead, M.I.; Stettler, M.E.J.; Saffell, J.R.; Jones, R.L. Use of Networks of Low Cost Air Quality Sensors to Quantify Air Quality in Urban Settings. Atmos. Environ. 2018, 194, 58–70. [Google Scholar] [CrossRef]
- Zaidan, M.A.; Xie, Y.; Motlagh, N.H.; Wang, B.; Nie, W.; Nurmi, P.; Tarkoma, S.; Petäjä, T.; Ding, A.; Kulmala, M. Dense Air Quality Sensor Networks: Validation, Analysis, and Benefits. IEEE Sens. J. 2022, 22, 23507–23520. [Google Scholar] [CrossRef]
- Chen, F.-L.; Liu, K.-H. Method for Rapid Deployment of Low-Cost Sensors for a Nationwide Project in the Internet of Things Era: Air Quality Monitoring in Taiwan. Int. J. Distrib. Sens. Networks 2020, 16, 155014772095133. [Google Scholar] [CrossRef]
- Penza, M.; Suriano, D.; Pfister, V.; Prato, M.; Cassano, G. Urban Air Quality Monitoring with Networked Low-Cost Sensor-Systems. In Proceedings of the Eurosensors, Paris, France, 3–6 September 2017; Volume 1, p. 573. [Google Scholar]
- Maag, B.; Zhou, Z.; Saukh, O.; Thiele, L. SCAN: Multi-Hop Calibration for Mobile Sensor Arrays. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 1–21. [Google Scholar] [CrossRef]
- Saukh, O.; Hasenfratz, D.; Thiele, L. Reducing Multi-Hop Calibration Errors in Large-Scale Mobile Sensor Networks. In Proceedings of the the 14th International Conference on Information Processing in Sensor Networks, Seattle, WA, USA, 13–16 April 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 274–285. [Google Scholar]
- Motlagh, N.H.; Petäjä, T.; Kulmala, M.; Trachoma, S.; Lagerspetz, E.; Nurmi, P.; Li, X.; Varjonen, S.; Mineraud, J.; Siekkinen, M.; et al. Toward Massive Scale Air Quality Monitoring. IEEE Commun. Mag. 2020, 58, 54–59. [Google Scholar] [CrossRef]
- Lin, Y.; Dong, W.; Chen, Y. Calibrating Low-Cost Sensors by a Two-Phase Learning Approach for Urban Air Quality Measurement. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 1–18. [Google Scholar] [CrossRef]
- Dong, W.; Guan, G.; Chen, Y.; Guo, K.; Gao, Y. Mosaic: Towards City Scale Sensing with Mobile Sensor Networks. In Proceedings of the 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS), Melbourne, VIC, Australia, 14–17 December 2015; pp. 29–36. [Google Scholar]
- Xiang, Y.; Piedrahita, R.; Dick, R.P.; Hannigan, M.; Lv, Q.; Shang, L. A Hybrid Sensor System for Indoor Air Quality Monitoring. In Proceedings of the Proceedings-IEEE International Conference on Distributed Computing in Sensor Systems, DCoSS 2013, Cambridge, MA, USA, 20–23 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 96–104. [Google Scholar]
- Cheng, Y.; He, X.; Zhou, Z.; Thiele, L. ICT: In-Field Calibration Transfer for Air Quality Sensor Deployments. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–19. [Google Scholar] [CrossRef]
- Yan, K.; Zhang, D. Calibration Transfer and Drift Compensation of E-Noses via Coupled Task Learning. Sens. Actuators B Chem. 2016, 225, 288–297. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, F.; Kadri, C.; Xiao, B.; Li, H.; Pan, L.; Zhou, H. On-Line Sensor Calibration Transfer among Electronic Nose Instruments for Monitoring Volatile Organic Chemicals in Indoor Air Quality. Sensors Actuators B Chem. 2011, 160, 899–909. [Google Scholar] [CrossRef]
- Fonollosa, J.; Fernández, L.; Gutiérrez-Gálvez, A.; Huerta, R.; Marco, S. Calibration Transfer and Drift Counteraction in Chemical Sensor Arrays Using Direct Standardization. Sens. Actuators B Chem. 2016, 236, 1044–1053. [Google Scholar] [CrossRef] [Green Version]
- deSouza, P.; Kahn, R.; Stockman, T.; Obermann, W.; Crawford, B.; Wang, A.; Crooks, J.; Li, J.; Kinney, P. Calibrating Networks of Low-Cost Air Quality Sensors. Atmos. Meas. Tech. 2022, 15, 6309–6328. [Google Scholar] [CrossRef]
- Barkjohn, K.K.; Gantt, B.; Clements, A.L. Development and Application of a United States Wide Correction for PM(2.5) Data Collected with the PurpleAir Sensor. Atmos. Meas. Tech. 2021, 14, 4617–4637. [Google Scholar] [CrossRef]
- Drajic, D.D.; Gligoric, N.R. Reliable Low-Cost Air Quality Monitoring Using Off-The-Shelf Sensors and Statistical Calibration. Elektron. Ir Elektrotech. 2020, 26, 32–41. [Google Scholar] [CrossRef]
- Vajs, I.; Drajic, D.; Gligoric, N.; Radovanovic, I.; Popovic, I. Developing Relative Humidity and Temperature Corrections for Low-Cost Sensors Using Machine Learning. Sensors 2021, 21, 3338. [Google Scholar] [CrossRef] [PubMed]
- Air Monitoring–EkoNET. Available online: https://ekonet.solutions/air-monitoring/ (accessed on 23 December 2022).
- Engelhardt, M.; Bain, L. Introduction to Probability and Mathematical Statistics; Duxbury Press: London, UK, 2000; ISBN 978-053-438-020-5. [Google Scholar]
- Teh, H.Y.; Kempa-Liehr, A.W.; Wang, K.I.-K. Sensor Data Quality: A Systematic Review. J. Big Data 2020, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009; ISBN 1441412697. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in {P}ython. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
Device ID | February | May | ||
---|---|---|---|---|
NO2 | PM10 | NO2 | PM10 | |
Ref. | 31.5 ± 18.1 | 37.7 ± 31.0 | 21.3 ± 12.5 | 21.6 ± 11.3 |
ID1 | 28.7 ± 1.0 | 49.4 ± 12.4 | 28.5 ± 0.8 | 40.7 ± 4.8 |
ID2 | 29.3 ± 1.5 | 55.5 ± 19.2 | 28.1 ± 2.0 | 41.6 ± 5.8 |
ID3 | 23.9 ± 4.4 | 47.1 ± 11.2 | 22.5 ± 4.6 | 39.5 ± 3.4 |
ID4 | 18.9 ± 0.7 | 47.3 ± 4.8 | 19.6 ± 0.8 | 43.4 ± 2.1 |
ID5 | 21.8 ± 0.8 | 42.8 ± 6.8 | 21.2 ± 1.2 | 35.8 ± 1.7 |
ID6 | 28.1 ± 2.7 | 49.8 ± 12.5 | 28.1 ± 3.2 | 41.2 ± 5.1 |
ID7 | 27.5 ± 3.3 | 52.2 ± 15.7 | 27.1 ± 4.8 | 42.1 ± 5.8 |
ID8 | / | 47.7 ± 4.3 | / | 44.7 ± 1.9 |
ID9 | 26.2 ± 3.1 | 46.9 ± 11.1 | 22 ± 3.3 | 39.3 ± 3.6 |
ID10 | 26.0 ± 4.5 | 49.9 ± 13.4 | 24.5 ± 4.8 | 39.0 ± 3.7 |
Device ID | Increase | RMSE Decrease | ||
---|---|---|---|---|
Direction 1 | Direction 2 | Direction 1 | Direction 2 | |
ID1 | 0.01 | 0.01 | 3.27 | 2.54 |
ID2 | 0.15 | 0.20 | 1.90 | 1.84 |
ID3 | 0.12 | 0.21 | 1.96 | 2.77 |
ID4 | 0.18 | 0.17 | 6.82 | 6.58 |
ID5 | 0.11 | 0.06 | 4.16 | 3.69 |
ID6 | 0.06 | 0.03 | 2.47 | 1.95 |
ID7 | 0.24 | 0.22 | 1.34 | 1.14 |
ID9 | 0.17 | 0.16 | 1.22 | 0.45 |
ID10 | 0.17 | 0.13 | 1.97 | 0.96 |
Device ID | Increase | RMSE Decrease | ||
---|---|---|---|---|
Direction 1 | Direction 2 | Direction 1 | Direction 2 | |
ID1 | 0.06 | 0.06 | 3.33 | 3.76 |
ID2 | 0.07 | 0.10 | 3.02 | 6.52 |
ID3 | 0.08 | 0.09 | 3.05 | 3.27 |
ID4 | 0.04 | 0.05 | 3.91 | 4.09 |
ID5 | 0.05 | 0.04 | 2.11 | 1.72 |
ID6 | 0.08 | 0.11 | 4.19 | 4.67 |
ID7 | 0.06 | 0.09 | 4.10 | 4.71 |
ID8 | 0.05 | 0.06 | 5.27 | 5.05 |
ID9 | 0.09 | 0.14 | 3.05 | 3.25 |
ID10 | 0.11 | 0.14 | 4.20 | 4.74 |
Device ID | Increase | RMSE Decrease | ||
---|---|---|---|---|
Direction 1 | Direction 2 | Direction 1 | Direction 2 | |
ID1 | 0.10 | −0.01 | 1.56 | 1.09 |
ID2 | 0.35 | 0.23 | 1.61 | 1.34 |
ID3 | 0.28 | 0.32 | 0.52 | 1.21 |
ID4 | 0.27 | 0.20 | 1.06 | 0.45 |
ID5 | 0.23 | 0.16 | −0.28 | −0.81 |
ID6 | 0.33 | 0.28 | 2.60 | 1.93 |
ID7 | 0.32 | 0.26 | 2.35 | 1.45 |
ID9 | 0.24 | 0.27 | 0.25 | −0.2 |
ID10 | 0.17 | 0.13 | 0.72 | −1.02 |
Device ID | Increase | RMSE Decrease | ||
---|---|---|---|---|
Direction 1 | Direction 2 | Direction 1 | Direction 2 | |
ID1 | −0.08 | −0.08 | 14.33 | 15.76 |
ID2 | 0.03 | 0.03 | 15.36 | 16.76 |
ID3 | 0.11 | 0.13 | 14.90 | 15.45 |
ID4 | 0.00 | 0.02 | 18.73 | 19.25 |
ID5 | −0.03 | −0.05 | 11.47 | 11.64 |
ID6 | 0.10 | 0.10 | 16.22 | 16.16 |
ID7 | 0.12 | 0.10 | 17.19 | 16.90 |
ID8 | −0.09 | −0.07 | 20.56 | 20.25 |
ID9 | 0.04 | −0.02 | 14.59 | 13.39 |
ID10 | 0.13 | 0.01 | 14.96 | 12.74 |
Evaluation Month and Pollutant | before Calibration (Mean ± std) | after Calibration (Mean ± std) | % of Increase | RMSE before Calibration (Mean ± std) | RMSE after Calibration (Mean ± std) | % of RMSE Decrease |
---|---|---|---|---|---|---|
NO2 Feb | 0.38 ± 0.14 | 0.51 ± 0.09 | 34.2 | 17.64 ± 1.51 | 15.03 ± 0.90 | 14.8 |
PM10 Feb | 0.43 ± 0.03 | 0.50 ± 0.03 | 16.3 | 31.39 ± 0.96 | 27.49 ± 0.94 | 12.4 |
NO2 May | 0.29 ± 0.08 | 0.46 ± 0.05 | 58.6 | 11.43 ± 0.77 | 10.55 ± 0.58 | 7.7 |
PM10 May | 0.38 ± 0.03 | 0.41 ± 0.06 | 7.9 | 23.50 ± 2.25 | 7.67 ± 0.62 | 67.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vajs, I.; Drajic, D.; Cica, Z. Data-Driven Machine Learning Calibration Propagation in A Hybrid Sensor Network for Air Quality Monitoring. Sensors 2023, 23, 2815. https://doi.org/10.3390/s23052815
Vajs I, Drajic D, Cica Z. Data-Driven Machine Learning Calibration Propagation in A Hybrid Sensor Network for Air Quality Monitoring. Sensors. 2023; 23(5):2815. https://doi.org/10.3390/s23052815
Chicago/Turabian StyleVajs, Ivan, Dejan Drajic, and Zoran Cica. 2023. "Data-Driven Machine Learning Calibration Propagation in A Hybrid Sensor Network for Air Quality Monitoring" Sensors 23, no. 5: 2815. https://doi.org/10.3390/s23052815
APA StyleVajs, I., Drajic, D., & Cica, Z. (2023). Data-Driven Machine Learning Calibration Propagation in A Hybrid Sensor Network for Air Quality Monitoring. Sensors, 23(5), 2815. https://doi.org/10.3390/s23052815