Morphological Autoencoders for Beat-by-Beat Atrial Fibrillation Detection Using Single-Lead ECG
Abstract
:1. Introduction
2. Related Work
2.1. Without Feature Engineering
2.2. Autoencoder-Based
2.3. For Real-Time Implementation
3. Methods
3.1. Autoencoder-Based Models
3.2. Rhythm Feature
4. Results
4.1. Databases
4.2. Preprocessing
4.3. Validation of the LCSD Metric
4.4. Training
4.5. Classification
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Database | Model | Layer | Size | Activation Function | Regularization |
---|---|---|---|---|---|
CinC2017 | AE | Input | 180 | - | - |
Dense | 45 | Linear | L1 () | ||
Dense | 180 | Linear | L1 () | ||
MLP | Input | 45 | - | - | |
Dense | 45 | ReLU | 0.2% Dropout | ||
Dense | 45 | ReLU | 0.2% Dropout | ||
Dense | 45 | ReLU | 0.2% Dropout | ||
Output | 1 | Sigmoid | - | ||
AFDB | AE | Input | 150 | - | - |
Dense | 37 | Linear | L1 () | ||
Dense | 150 | Linear | L1 () | ||
MLP | Input | 37 | - | - | |
Dense | 37 | ReLU | 0.2% Dropout | ||
Dense | 37 | ReLU | 0.2% Dropout | ||
Dense | 37 | ReLU | 0.2% Dropout | ||
Output | 1 | Sigmoid | - |
Parameter | Autoencoder | MLP Classifier | |
---|---|---|---|
Training | Loss Function | Mean Squared Error | Binary Cross-Entropy |
Epochs | 2000 | 2000 | |
Early Stopping | min mode, 50 epoch-patience | min mode, 50 epoch-patience | |
Batch Size | 32 | 32 | |
Optimizer | Type | Adam | Adam |
Learning Rate | |||
Beta1 | 0.9 | 0.9 | |
Beta2 | 0.999 | 0.999 | |
Epsilon |
Appendix B
Database | SupA E | Features | Num. of Epochs | Training Loss (min) | Validation Loss (min) | AUC Threshold |
---|---|---|---|---|---|---|
CinC2017 | No | M | 229 | 0.320 | 0.317 | 0.337 |
M+LCSD | 223 | 0.218 | 0.217 | 0.408 | ||
Yes | M | 942 | 0.337 | 0.314 | 0.46 | |
M+LCSD | 2000 | 0.195 | 0.214 | 0.439 | ||
AFDB | No | M | 122 | 0.074 | 0.054 | 0.298 |
M+LCSD | 206 | 0.067 | 0.05 | 0.563 | ||
Yes | M | 359 | 0.039 | 0.044 | 0.239 | |
M+LCSD | 2000 | 0.035 | 0.039 | 0.17 | ||
AFDB (by patient) | No | M | 100 | 0.080 | 0.491 | 0.313 |
M+LCSD | 55 | 0.082 | 0.373 | 0.437 | ||
Yes | M | 141 | 0.081 | 0.251 | 0.450 | |
M+LCSD | 2000 | 0.076 | 0.107 | 0.480 |
Database | SupAE | Features | Accuracy | Precision | Recall | F1-Score | AUC |
---|---|---|---|---|---|---|---|
CinC2017 | No | M | 0.82 | 0.794 | 0.863 | 0.827 | 0.892 |
M+LCSD | 0.885 | 0.876 | 0.897 | 0.886 | 0.945 | ||
Yes | M | 0.831 | 0.821 | 0.847 | 0.834 | 0.908 | |
M+LCSD | 0.888 | 0.888 | 0.889 | 0.888 | 0.951 | ||
AFDB | No | M | 0.777 | 0.718 | 0.911 | 0.803 | 0.797 |
M+LCSD | 0.818 | 0.759 | 0.932 | 0.837 | 0.825 | ||
Yes | M | 0.87 | 0.933 | 0.798 | 0.86 | 0.874 | |
M+LCSD | 0.887 | 0.947 | 0.82 | 0.879 | 0.908 | ||
AFDB (by patient) | No | M | 0.703 | 0.652 | 0.871 | 0.746 | 0.719 |
M+LCSD | 0.732 | 0.684 | 0.864 | 0.763 | 0.754 | ||
Yes | M | 0.804 | 0.771 | 0.865 | 0.815 | 0.833 | |
M+LCSD | 0.837 | 0.824 | 0.857 | 0.84 | 0.907 |
References
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Kornej, J.; Börschel, C.S.; Benjamin, E.J.; Schnabel, R.B. Epidemiology of Atrial Fibrillation in the 21st Century. Circ. Res. 2020, 127, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Healey, J.S.; Connolly, S.J.; Gold, M.R.; Israel, C.W.; Van Gelder, I.C.; Capucci, A.; Lau, C.P.; Fain, E.; Yang, S.; Bailleul, C.; et al. Subclinical Atrial Fibrillation and the Risk of Stroke. N. Engl. J. Med. 2012, 366, 120–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lippi, G.; Sanchis-Gomar, F.; Cervellin, G. Global Epidemiology of Atrial Fibrillation: An Increasing Epidemic and Public Health Challenge. Int. J. Stroke 2021, 16, 217–221. [Google Scholar] [CrossRef]
- Zhang, J.; Johnsen, S.P.; Guo, Y.; Lip, G.Y.H. Epidemiology of Atrial Fibrillation: Geographic and Ecological Risk Factors, Age, Sex, Genetics. Card. Electrophysiol. Clin. 2021, 13, 1–23. [Google Scholar] [CrossRef]
- Nattel, S.; Burstein, B.; Dobrev, D. Atrial Remodeling and Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 2008, 1, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Nattel, S.; Harada, M. Atrial Remodeling and Atrial Fibrillation: Recent Advances and Translational Perspectives. J. Am. Coll. Cardiol. 2014, 63, 2335–2345. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Yamashita, T.; Sagara, K.; Iinuma, H.; Fu, L.T. Progressive Nature of Paroxysmal Atrial Fibrillation. Circ. J. 2004, 68, 568–572. [Google Scholar] [CrossRef] [Green Version]
- Hagii, J.; Metoki, N.; Saito, S.; Shiroto, H.; Sasaki, S.; Takahashi, K.; Hitomi, H.; Baba, Y.; Yamada, N.; Seino, S.; et al. Persistent or Permanent Atrial Fibrillation is Associated with Severe Cardioembolic Stroke in Patients with Non-valvular Atrial Fibrillation. Thromb. J. 2021, 19, 22. [Google Scholar] [CrossRef]
- Podrid, P.; Malhotra, R.; Kakkar, R.; Noseworthy, P. Podrid’s Real-World ECGs: Volume 4, Arrhythmias: A Master’s Approach to the Art and Practice of Clinical ECG Interpretation; Cardiotext Publishing: Minneapolis, MN, USA, 2015. [Google Scholar]
- Hickey, K.T.; Riga, T.C.; Mitha, S.A.; Reading, M.J. Detection and Management of Atrial Fibrillation Using Remote Monitoring. Nurse Pract. 2018, 43, 24–30. [Google Scholar] [CrossRef]
- Perez, M.V.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.; Cheung, L.; et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917. [Google Scholar] [CrossRef]
- Perino, A.C.; Gummidipundi, S.E.; Lee, J.; Hedlin, H.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Gardner, R.M.; Cheung, L.; Hung, G.; et al. Arrhythmias Other Than Atrial Fibrillation in Those With an Irregular Pulse Detected With a Smartwatch: Findings From the Apple Heart Study. Circ. Arrhythmia Electrophysiol. 2021, 14, e010063. [Google Scholar] [CrossRef]
- Serhani, M.A.; El Kassabi, H.; Ismail, H.; Nujum Navaz, A. ECG Monitoring Systems: Review, Architecture, Processes, and Key Challenges. Sensors 2020, 20, 1796. [Google Scholar] [CrossRef] [Green Version]
- da Silva, H.P. The Biosignal C.A.O.S.: Reflections on the Usability of Physiological Sensing for Human-Computer Interaction Practitioners and Researchers. In Proceedings of the Converging Clinical and Engineering Research on Neurorehabilitation II; Ibáñez, J., González-Vargas, J., Azorín, J.M., Akay, M., Pons, J.L., Eds.; Biosystems & Biorobotics; Springer: Cham, Switzerland, 2017; pp. 807–811. [Google Scholar] [CrossRef]
- da Silva, H.P.; Carreiras, C.; Lourenço, A.; Fred, A.; das Neves, R.C.; Ferreira, R. Off-the-person Electrocardiography: Performance Assessment and Clinical Correlation. Health Technol. 2015, 4, 309–318. [Google Scholar] [CrossRef]
- Silva, A.S.; Correia, M.V.; Silva, H.P. Invisible ECG for High Throughput Screening in eSports. Sensors 2021, 21, 7601. [Google Scholar] [CrossRef]
- dos Santos Silva, A.; Almeida, H.; da Silva, H.P.; Oliveira, A. Design and Evaluation of a Novel Approach to Invisible Electrocardiography (ECG) in Sanitary Facilities Using Polymeric Electrodes. Sci. Rep. 2021, 11, 6222. [Google Scholar] [CrossRef]
- Wesselius, F.J.; van Schie, M.S.; De Groot, N.M.S.; Hendriks, R.C. Digital Biomarkers and Algorithms for Detection of Atrial Fibrillation Using Surface Electrocardiograms: A Systematic Review. Comput. Biol. Med. 2021, 133, 104404. [Google Scholar] [CrossRef]
- Li, K.; Rüdiger, H.; Ziemssen, T. Spectral Analysis of Heart Rate Variability: Time Window Matters. Front. Neurol. 2019, 10, 545. [Google Scholar] [CrossRef] [Green Version]
- Goldberger, A.; Amaral, L.; Glass, L.; Havlin, S.; Hausdorg, J.; Ivanov, P.; Mark, R.; Mietus, J.; Moody, G.; Peng, C.K.; et al. Components of a New Research Resource for Complex Physiologic Signals. PhysioNet 2000, 101, E215–E220. [Google Scholar]
- Moody, G.B.; Mark, R.G. A New Method for Detecting Atrial Fibrillation using R-R Intervals. Comput. Cardiol. 1983, 10, 227–230. [Google Scholar]
- Clifford, G.D.; Liu, C.; Moody, B.; Lehman, L.w.H.; Silva, I.; Li, Q.; Johnson, A.E.; Mark, R.G. AF Classification from a Short Single Lead ECG Recording: The PhysioNet/Computing in Cardiology Challenge 2017. Comput. Cardiol. 2017, 44, 1–4. [Google Scholar]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baalman, S.W.E.; Schroevers, F.E.; Oakley, A.J.; Brouwer, T.F.; Stuijt, W.v.d.; Bleijendaal, H.; Ramos, L.A.; Lopes, R.R.; Marquering, H.A.; Knops, R.E.; et al. A Morphology Based Deep Learning Model for Atrial Fibrillation Detection Using Single Cycle Electrocardiographic Samples. Int. J. Cardiol. 2020, 316, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Yao, Q.; Cai, Y.; Miao, F.; Sun, F.; Li, Y. Multiscaled Fusion of Deep Convolutional Neural Networks for Screening Atrial Fibrillation from Single Lead Short ECG Recordings. IEEE J. Biomed. Health Inform. 2018, 22, 1744–1753. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, M.; Polat, K.; Alhudhaif, A.; Hemanth, J.; Wu, W. Detection of Atrial Fibrillation from Variable-Duration ECG Signal Based on Time-Adaptive Densely Network and Feature Enhancement Strategy. IEEE J. Biomed. Health Inform. 2023, 27, 944–955. [Google Scholar] [CrossRef]
- Yuan, C.; Yan, Y.; Zhou, L.; Bai, J.; Wang, L. Automated Atrial Fibrillation Detection Based on Deep Learning Network. In Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA), Ningbo, China, 1–3 August 2016; pp. 1159–1164. [Google Scholar] [CrossRef]
- Chen, L.; He, Y. Identification of Atrial Fibrillation from Electrocardiogram Signals Based on Deep Neural Network. J. Med Imaging Health Inform. 2019, 9, 838–846. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, Y.; Liang, Y.; Zhan, Z.; Jiang, M.; Zhang, X.; da Silva, D.S.; Wu, W.; Albuquerque, V.H.C.d. Edge2Analysis: A Novel AIoT Platform for Atrial Fibrillation Recognition and Detection. IEEE J. Biomed. Health Inform. 2022, 26, 5772–5782. [Google Scholar] [CrossRef]
- Andersen, R.S.; Peimankar, A.; Puthusserypady, S. A Deep Learning Approach for Real-Time Detection of Atrial Fibrillation. Expert Syst. Appl. 2019, 115, 465–473. [Google Scholar] [CrossRef]
- Saleh, H. Machine Learning Fundamentals; Packt Publishing: Woodside, NY, USA, 2018. [Google Scholar]
- Le, L.; Patterson, A.; White, M. Supervised Autoencoders: Improving Generalization Performance with Unsupervised Regularizers. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, Canada, 3–8 December 2018; Curran Associates Inc.: Red Hook, NY, USA, 2018; pp. 107–117. [Google Scholar]
- Silva, R. An Artificial Intelligence Approach to Atrial Fibrillation Detection in Single-lead Invisible ECG. Master’s Thesis, Instituto Superior Técnico, Lisbon, Portugal, 2021. [Google Scholar]
- Carreiras, C.; Alves, A.P.; Lourenço, A.; Canento, F.; Silva, H.; Fred, A. BioSPPy: Biosignal Processing in Python. 2015. [Google Scholar]
- Hamilton, P. Open source ECG analysis. In Proceedings of the Computers in Cardiology, London, UK, 5–8 September 1993; pp. 101–104. [Google Scholar] [CrossRef]
- Lourenco, A.; Plácido da Silva, H.; Leite, P.; Lourenço, R.; Fred, A. Real Time Electrocardiogram Segmentation for Finger Based ECG Biometrics. In Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing (BIOSTEC), Vilamoura, Portugal, 1–14 February 2012; pp. 49–54. [Google Scholar]
- Lourenço, A.; Silva, H.; Carreiras, C.; Fred, A. Outlier Detection in Non-Intrusive ECG Biometric System. In Proceedings of the Image Analysis and Recognition; Kamel, M., Campilho, A., Eds.; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2013; pp. 43–52. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
Database (Year) | Lead System | Duration Recording | Sampling Rate (Hz) | ADC Resolution | Dynamic Range | Bandwidth |
---|---|---|---|---|---|---|
CinC2017 (2017) | Single-lead | 9–60 s | 300 | 16-bit | ±5 mV | 0.5–40 Hz |
AFDB (1983) | Two-lead | 10 h | 250 | 12-bit | ±10 mV | 0.1–40 Hz |
Database | Recordings | Signal Portions | ECG Waves | ||
---|---|---|---|---|---|
NSR | AFib | NSR | AFib | ||
CinC2017 | 5788 | 5050 | 738 | 144,310 | 27,969 |
AFDB | 23 | 288 | 289 | 478,898 | 365,455 |
Database | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
CinC2017 | 0.870 | 0.739 | 0.304 | 0.431 |
AFDB | 0.757 | 0.820 | 0.562 | 0.667 |
Database | SupAE | Features | Accuracy | F1-Score | AUC |
---|---|---|---|---|---|
CinC2017 | No | AE | 0.820 | 0.827 | 0.892 |
AE+LCSD | 0.885 | 0.886 | 0.945 | ||
Yes | AE | 0.831 | 0.834 | 0.908 | |
AE+LCSD | 0.888 | 0.888 | 0.951 | ||
AFDB | No | AE | 0.777 | 0.803 | 0.797 |
AE+LCSD | 0.818 | 0.837 | 0.825 | ||
Yes | AE | 0.870 | 0.860 | 0.874 | |
AE+LCSD | 0.887 | 0.879 | 0.908 | ||
AFDB (by patient) | No | AE | 0.703 | 0.746 | 0.719 |
AE+LCSD | 0.732 | 0.763 | 0.754 | ||
Yes | AE | 0.804 | 0.815 | 0.833 | |
AE+LCSD | 0.837 | 0.840 | 0.907 |
Data Source | Author | Methodology | F1-Score | For Real-Time | Feature Engineering |
---|---|---|---|---|---|
CinC2017 | Zhang et al. [27] | DenseNet+Bi-LSTM | 0.990 | No | No |
Chen et al. [30] | MLP | 0.915 | Yes | Yes, 22 features | |
Proposed Approach | AE+MLP | 0.888 | Yes | No | |
AFDB | Zhang et al. [27] | DenseNet+Bi-LSTM | 0.876 | No | No |
Andersen et al. [31] | CNN+LSTM | 0.972 | Yes | No | |
Proposed Approach | AE+MLP | 0.879 | Yes | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.; Fred, A.; Plácido da Silva, H. Morphological Autoencoders for Beat-by-Beat Atrial Fibrillation Detection Using Single-Lead ECG. Sensors 2023, 23, 2854. https://doi.org/10.3390/s23052854
Silva R, Fred A, Plácido da Silva H. Morphological Autoencoders for Beat-by-Beat Atrial Fibrillation Detection Using Single-Lead ECG. Sensors. 2023; 23(5):2854. https://doi.org/10.3390/s23052854
Chicago/Turabian StyleSilva, Rafael, Ana Fred, and Hugo Plácido da Silva. 2023. "Morphological Autoencoders for Beat-by-Beat Atrial Fibrillation Detection Using Single-Lead ECG" Sensors 23, no. 5: 2854. https://doi.org/10.3390/s23052854
APA StyleSilva, R., Fred, A., & Plácido da Silva, H. (2023). Morphological Autoencoders for Beat-by-Beat Atrial Fibrillation Detection Using Single-Lead ECG. Sensors, 23(5), 2854. https://doi.org/10.3390/s23052854