Dual-Responsive and Reusable Optical Sensors Based on 2,3-Diaminoquinoxalines for Acidity Measurements in Low-pH Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Polymer Films and Test Strips
2.2. Preparation of Monolayers and LB/LS Films
2.3. In Situ UV–Vis Absorption Spectroscopy of Langmuir Monolayers
2.4. UV–Vis Absorption and Fluorescence Measurements of Solutions and LB/LS Films
2.5. Atomic Force Microscopy (AFM) Investigations
2.6. Visual Determination of pH in Aqueous Solutions
3. Results
3.1. Synthesis of Aminoquinoxalines
3.2. Polymer Films and Test Strips Based on Aminoquinoxaline QC1
3.3. Monolayers of Amphiphilic Aminoquinoxaline QC8 at the Air–Water Interface and Their Transfer onto Solid Supports
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Yang, Z.; Ye, B.; Zhao, Z.; Ruan, Y.; Guo, T.; Yu, X.; Chen, G.; Xu, S. A review of stability-enhanced luminescent materials: Fabrication and optoelectronic applications. J. Mater. Chem. C 2019, 7, 4934–4955. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G. Advances in luminescent materials with aggregation-induced emission (AIE) properties for biomedical applications. J. Mater. Chem. B 2018, 6, 4029–4042. [Google Scholar] [CrossRef]
- Han, T.; Yan, D.; Wu, Q.; Song, N.; Zhang, H.; Wang, D. Aggregation-induced emission: A rising star in chemistry and materials science. Chin. J. Chem. 2021, 39, 677–689. [Google Scholar] [CrossRef]
- Uglov, A.N.; Bessmertnykh-Lemeune, A.; Guilard, R.; Averin, A.D.; Beletskaya, I.P. Optical methods for the detection of heavy metal ions. Russ. Chem. Rev. 2014, 83, 196–224. [Google Scholar] [CrossRef]
- Ulman, A. An Introduction of Ultrathin Organic Films from Langmuir–Blodgett to Self-Assembly; Academic Press: New York, NY, USA, 1991; 443p. [Google Scholar]
- Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- Petty, M.C. Film deposition. In Langmuir–Blodgett Films; Roberts, G., Ed.; Springer: New York, NY, USA, 1990; pp. 93–132. [Google Scholar] [CrossRef]
- Ariga, K. Don’t forget Langmuir–Blodgett films 2020: Interfacial nanoarchitectonics with molecules, materials, and living objects. Langmuir 2020, 36, 7158–7180. [Google Scholar] [CrossRef]
- Ermakova, E.V.; Koroleva, E.O.; Shokurov, A.V.; Arslanov, V.V.; Bessmertnykh-Lemeune, A. Ultra-thin film sensors based on porphyrin-5-ylphosphonate diesters for selective and sensitive dual-channel optical detection of mercury(II) ions. Dyes Pigm. 2020, 186, 108967. [Google Scholar] [CrossRef]
- Khan, M.I.; Mukherjee, K.; Shoukat, R.; Dong, H. A review on pH sensitive materials for sensors and detection methods. Microsyst. Technol. 2017, 23, 4391–4404. [Google Scholar] [CrossRef]
- Galloway, J.N. Acidification of the world: Natural and anthropogenic. Water Air Soil Pollut. 2001, 130, 17–24. [Google Scholar] [CrossRef]
- Falkenberg, L.J.; Bellerby, R.G.; Connell, S.D.; Fleming, L.E.; Maycock, B.; Russell, B.D.; Sullivan, F.J.; Dupont, S. Ocean acidification and human health. Int. J. Environ. Res. Public Health 2020, 17, 4563. [Google Scholar] [CrossRef]
- Steinegger, A.; Wolfbeis, O.S.; Borisov, S.M. Optical sensing and imaging of pH values: Spectroscopies, materials, and applications. Chem. Rev. 2020, 120, 12357–12489. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Baheti, A.; Thomas, K.J. Synthesis and optical properties of acidochromic amine-substituted benzo[a]phenazines. J. Org. Chem. 2011, 76, 6134–6145. [Google Scholar] [CrossRef]
- Jo, S.; Kim, D.; Son, S.-H.; Kim, Y.; Lee, T.S. Conjugated poly(fluorene-quinoxaline) for fluorescence imaging and chemical detection of nerve agents with its paper-based strip. ACS Appl. Mater. Interfaces 2014, 6, 1330–1336. [Google Scholar] [CrossRef]
- Aggarwal, K.; Khurana, J.M. Indeno–furan based colorimetric and on–off fluorescent pH sensors. J. Photochem. Photobiol. A 2015, 307, 23–29. [Google Scholar] [CrossRef]
- Mazumdar, P.; Maity, S.; Shyamal, M.; Das, D.; Sahoo, G.P.; Misra, A. Proton triggered emission and selective sensing of picric acid by the fluorescent aggregates of 6,7-dimethyl-2,3-bis-(2-pyridyl)quinoxaline. Phys. Chem. Chem. Phys. 2016, 18, 7055–7067. [Google Scholar] [CrossRef]
- Duffy, K.J.; Haltiwanger, R.C.; Freyer, A.J.; Li, F.; Luengo, J.I.; Cheng, H.-Y. Pyrido[1, 2-a]quinoxalines: Synthesis, crystal structure determination and pH-dependent fluorescence. J. Chem. Soc. Perkin Trans. 2002, 2, 181–185. [Google Scholar] [CrossRef]
- Bag, R.; Sikdar, Y.; Sahu, S.; Maiti, D.K.; Frontera, A.; Bauzá, A.; Drew, M.G.; Goswami, S. A versatile quinoxaline derivative serves as a colorimetric sensor for strongly acidic pH. Dalton Trans. 2018, 47, 17077–17085. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cui, M.; Tang, H.; Cao, D. Fluorescent nanoaggregates of quinoxaline derivatives for highly efficient and selective sensing of trace picric acid. Dyes Pigm. 2018, 155, 107–113. [Google Scholar] [CrossRef]
- Park, J.S.; Tran, T.T.; Kim, J.; Sessler, J.L. Electrochemical amphotericity and NIR absorption induced via the step-wise protonation of fused quinoxaline-tetrathiafulvalene-pyrroles. Chem. Commun. 2018, 54, 4553–4556. [Google Scholar] [CrossRef]
- More, Y.W.; Padghan, S.D.; Bhosale, R.S.; Pawar, R.P.; Puyad, A.L.; Bhosale, S.V.; Bhosale, S.V. Proton triggered colorimetric and fluorescence response of a novel quinoxaline compromising a donor-acceptor system. Sensors 2018, 18, 3433. [Google Scholar] [CrossRef] [Green Version]
- Moshkina, T.N.; Nosova, E.V.; Lipunova, G.N.; Valova, M.S.; Charushin, V.N. New 2,3-Bis(5-arylthiophen-2-yl)quinoxaline Derivatives: Synthesis and Photophysical Properties. Asian J. Org. Chem. 2018, 7, 1080–1084. [Google Scholar] [CrossRef]
- Gupta, S.; Milton, M.D. Design and synthesis of novel V-shaped AIEE active quinoxalines for acidochromic applications. Dyes Pigm. 2019, 165, 474–487. [Google Scholar] [CrossRef]
- Wang, M.; Wang, S.; Song, X.; Liang, Z.; Su, X. Photo-responsive oxidase mimic of conjugated microporous polymer for constructing a pH-sensitive fluorescent sensor for bio-enzyme sensing. Sens. Actuators B 2020, 316, 128157. [Google Scholar] [CrossRef]
- Zhao, F.; Sun, T.; Wang, Y.; Zhan, Y.; Yang, W. Achieving dual-responsive fluorescence switching towards mechanical force and volatile acid vapor based on D–A type diphenylamine functionalized quinoxaline derivatives. Dyes Pigm. 2021, 196, 109763. [Google Scholar] [CrossRef]
- Vishwakarma, V.K.; Adupa, V.; Anki Reddy, K.; Ammathnadu Sudhakar, A. Experimental and theoretical investigations of acid sensing properties of pyrazino[2,3-g]quinoxaline derivatives. J. Mol. Struct. 2021, 1225, 129120. [Google Scholar] [CrossRef]
- Safavi, A.; Abdollahi, H. Optical sensor for high pH values. Anal. Chim. Acta 1998, 367, 167–173. [Google Scholar] [CrossRef]
- Tian, M.; Peng, X.; Fan, J.; Wang, J.; Sun, S. A fluorescent sensor for pH based on rhodamine fluorophore. Dyes Pigm. 2012, 95, 112–115. [Google Scholar] [CrossRef]
- Yang, M.; Song, Y.; Zhang, M.; Lin, S.; Hao, Z.; Liang, Y.; Zhang, D.; Chen, P.R. Converting a solvatochromic fluorophore into a protein-based pH indicator for extreme acidity. Angew. Chem. Int. Ed. 2012, 51, 7674–7679. [Google Scholar] [CrossRef]
- Li, H.; Guan, H.; Duan, X.; Hu, J.; Wang, G.; Wang, Q. An acid catalyzed reversible ring-opening/ring-closure reaction involving a cyano-rhodamine spirolactam. Org. Biomol. Chem. 2013, 11, 1805–1809. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Jiang, Z.; Xiao, Y.; Bi, F.-Z.; Miao, J.-Y.; Zhao, B.-X. A new fluorescent pH probe for extremely acidic conditions. Anal. Chim. Acta 2014, 820, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Gong, H.; Zhang, B.; Liu, M. Photochemical reaction, acidichromism, and supramolecular nanoarchitectures in the Langmuir−Blodgett films of an amphiphilic styrylquinoxaline derivative. Langmuir 2004, 20, 8042–8048. [Google Scholar] [CrossRef]
- Rozzi, A.; Pedrini, A.; Pinalli, R.; Massera, C.; Elmi, I.; Zampolli, S.; Dalcanale, E. Tuning the conformational flexibility of quinoxaline cavitands for complexation at the gas–solid interface. Chem. Commun. 2022, 58, 7554–7557. [Google Scholar] [CrossRef]
- Choi, S.; Lee, H.; Kim, H.K.; Lee, S.U.; Sohn, D. Two dimensional aggregation behaviors of quinoxaline dendrimers. J. Nanosci. Nanotechnol. 2015, 15, 1511–1514. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Miyake, T.; Suginome, M.; Katakura, R.; Mitsuishi, M.; Miyashita, T. Langmuir–Blodgett films of helical rigid-rod poly(quinoxaline-2,3-diyl)s. Polym. J. 2010, 42, 406–410. [Google Scholar] [CrossRef]
- Nagamura, T.; Fujita, T.; Takasaka, M.; Takeshita, H.; Mori, A.; Nagao, T. Assembling and optical properties of dicyclohepta[5, 6:b]pyrazino[2,3−g]quinoxaline-3,11-dione derivatives. Thin Solid Film. 1994, 243, 602–605. [Google Scholar] [CrossRef]
- Ermakova, E.V.; Cheprakov, A.V.; Bessmertnykh-Lemeune, A. Aminoquinoxaline-based dual colorimetric and fluorescent sensors for pH measurement in aqueous media. Chemosensors 2022, 10, 342. [Google Scholar] [CrossRef]
- Magde, D.; Wong, R.; Seybold, P.G. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields. Photochem. Photobiol. 2002, 75, 327–334. [Google Scholar] [CrossRef]
- SPARTAN 14.V1.1.4., Wavefunction, Inc., 18401, Von Karman Avenue, Suite 370, Irvine CA 92612 USA. Available online: https://www.wavefun.com (accessed on 1 March 2023).
- Ghosh, A.; Mahato, P.; Choudhury, S.; Das, A. Comparative study of porphyrin derivatives in monolayers at the air–water interface and in Langmuir–Blodgett films. Thin Solid Film. 2011, 519, 8066–8073. [Google Scholar] [CrossRef]
- Black, H.T.; Pelse, I.; Wolfe, R.M.; Reynolds, J.R. Halochromism and protonation-induced assembly of a benzo[g]indolo[2,3-b]quinoxaline derivative. Chem. Commun. 2016, 52, 12877–12880. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, T.; Yan, J.; Chen, X.; Wang, L.; Liu, X.; Zheng, K.; Zhang, N. A simple acidic ‘turn-on’ fluorescent pH probe based on BOPYIN and its visual detection and cellular imaging. Dyes Pigm. 2020, 177, 108318. [Google Scholar] [CrossRef]
- Liu, T.; Huang, Z.; Feng, R.; Ou, Z.; Wang, S.; Yang, L.; Ma, L.-J. An intermolecular pyrene excimer-based ratiometric fluorescent probes for extremely acidic pH and its applications. Dyes Pigm. 2020, 174, 108102. [Google Scholar] [CrossRef]
- Ji, H.; Duan, W.; Huo, Y.; Liu, W.; Huang, X.; Wang, Y.; Gong, S. Highly sensitive fluorescence response of [2.2]paracyclophane modified D−A type chromophores to trace water, pH, acidic gases and formaldehyde. Dyes Pigm. 2022, 205, 110491. [Google Scholar] [CrossRef]
- Ertekin, K.; Alp, S.; Karapire, C.; Yenigül, B.; Henden, E.; İçli, S. Fluorescence emission studies of an azlactone derivative embedded in polymer films: An optical sensor for pH measurements. J. Photochem. Photobiol. A 2000, 137, 155–161. [Google Scholar] [CrossRef]
- Deibert, B.J.; Li, J. A distinct reversible colorimetric and fluorescent low pH response on a water-stable zirconium–porphyrin metal–organic framework. Chem. Commun. 2014, 50, 9636–9639. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, X.; Huang, C.; Jia, N. Dual-modal colorimetric/fluorescence molecular probe for ratiometric sensing of pH and its application. Anal. Chem. 2016, 88, 8332–8338. [Google Scholar] [CrossRef] [PubMed]
- Isoda, K. Acid-responsive N-heteroacene-based material showing multi-emission colors. ChemistryOpen 2017, 6, 242–246. [Google Scholar] [CrossRef]
- Haldar, U.; Chaudhury, S.S.; Sharma, R.; Ruidas, B.; Patra, S.G.; Mukhopadhyay, C.D.; Lee, H.-i. A fluorimetric water-soluble polymeric pH chemosensor for extremely acidic conditions: Live-cell and bacterial imaging application. Sens. Actuators B 2020, 320, 128379. [Google Scholar] [CrossRef]
- Zhou, J.; Li, G.; Ling, J.; Zhou, Q.; Chu, C. A novel near-infrared colorimetric and fluorescent probe based on a piperidine-substituted aza-BODIPY photosensitizer for detection of extreme acidity. Anal. Methods 2021, 13, 4099–4104. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, B.; Gao, C.; Zhu, K.; Xu, W.; Song, D. Stable, reusable, and rapid response smart pH-responsive cotton fabric based on covalently immobilized with naphthalimide–rhodamine probe. Sens. Actuators B 2022, 355, 131310. [Google Scholar] [CrossRef]
- Petersen, M.H.; Gevorgyan, S.A.; Krebs, F.C. Thermocleavable low band gap polymers and solar cells therefrom with remarkable stability toward oxygen. Macromolecules 2008, 41, 8986–8994. [Google Scholar] [CrossRef]
Entry | Dye | Support | Immobilization Technique | pH Range or Specific Acidic Analyte (Response Time) | Signal Registration | Accuracy (Qualitative/Quantitative) | Stability and Reusability | Ref. |
---|---|---|---|---|---|---|---|---|
1 | 1 | PVC | Plasticization in the presence of dye | pH = 1–7 (5 min) | colorimetry (daylight) spectrophotometry fluorescence | quantitative | was reused 3 times (recovery time is 30 min) | [46] |
2 | 2 | Cotton textile | Covalent binding | pH = 2–6 (1–5 s) | spectrophotometry | quantitative | stable in aqueous HCl (pH = 2, 24 h); was reused 20 times | [52] |
3 | 3 | Zr-MOF | Solvothermal synthesis | pH = 0–6 | colorimetry (daylight) | semi-quantitative | was reused 7 times | [47] |
4 | 4 | Paper strips | Impregnation | Picric acid | colorimetry (LED 2) | semi-quantitative | n/d | [20] |
5 | 5 | Paper strips | Impregnation | pH = 1–4 (immediately) | colorimetry (daylight) | semi-quantitative | n/d | [51] |
6 | 6 | n/d | Drop-casting | HCl (vapor) (100 s) | colorimetry (daylight, LED 2) | qualitative | was reused 1 time | [49] |
7 | 7 | Quartz silica | Spin coating impregnation | TFA | colorimetry (daylight, LED 2) | qualitative | was regenerated | [27] |
8 | QC1 | Agarose polymer | Sol-gel | pH = 1–5 (30 s) | colorimetry (daylight, LED 2) | semi-quantitative | was reused 5 times | This work |
9 | QC8 | PVC or quartz | LB/LS technique | pH = 1–3 (30 s) | colorimetry (daylight, LED 2) spectrophotometry fluorescence | quantitative | was reused 5 times | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermakova, E.V.; Bol’shakova, A.V.; Bessmertnykh-Lemeune, A. Dual-Responsive and Reusable Optical Sensors Based on 2,3-Diaminoquinoxalines for Acidity Measurements in Low-pH Aqueous Solutions. Sensors 2023, 23, 2978. https://doi.org/10.3390/s23062978
Ermakova EV, Bol’shakova AV, Bessmertnykh-Lemeune A. Dual-Responsive and Reusable Optical Sensors Based on 2,3-Diaminoquinoxalines for Acidity Measurements in Low-pH Aqueous Solutions. Sensors. 2023; 23(6):2978. https://doi.org/10.3390/s23062978
Chicago/Turabian StyleErmakova, Elizaveta V., Anastasia V. Bol’shakova, and Alla Bessmertnykh-Lemeune. 2023. "Dual-Responsive and Reusable Optical Sensors Based on 2,3-Diaminoquinoxalines for Acidity Measurements in Low-pH Aqueous Solutions" Sensors 23, no. 6: 2978. https://doi.org/10.3390/s23062978
APA StyleErmakova, E. V., Bol’shakova, A. V., & Bessmertnykh-Lemeune, A. (2023). Dual-Responsive and Reusable Optical Sensors Based on 2,3-Diaminoquinoxalines for Acidity Measurements in Low-pH Aqueous Solutions. Sensors, 23(6), 2978. https://doi.org/10.3390/s23062978