PEDOT Films Doped with Titanyl Oxalate as Chemiresistive and Colorimetric Dual-Mode Sensors for the Detection of Hydrogen Peroxide Vapor
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Characterization
2.3. Preparation of PEDOT-Based Composite Films
2.4. Construction of the HPV Detection System
3. Results and Discussion
3.1. Chemiresistive HPV Sensing Based on PEDOT:PSS-ATO and PEDOT:PSS-ATO/PEDOT Films
3.2. Colorimetric HPV Sensing Based on PEDOT:PSS-ATO and PEDOT:PSS-ATO/PEDOT Films
4. Conclusions and Prospects
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, D.J.; Yang, Y.S.; Zhu, H.L. Recent progress in the development of small-molecule fluorescent probes for the detection of hydrogen peroxide. TrAC Trends Anal. Chem. 2019, 118, 625–651. [Google Scholar] [CrossRef]
- Song, M.R.; Wang, J.L.; Chen, B.Y.; Wang, L. A Facile, nonreactive hydrogen peroxide (H2O2) detection method enabled by ion chromatography with UV detector. Anal. Chem. 2017, 89, 11537–11544. [Google Scholar] [CrossRef] [PubMed]
- Tantawi, O.; Baalbaki, A.; El Asmar, R.; Ghauch, A. A rapid and economical method for the quantification of hydrogen peroxide (H2O2) using a modified HPLC apparatus. Sci. Total Environ. 2019, 654, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.S.; Chien, C.F.; Chou, D. Unison decision framework for hybrid optimization of wastewater treatment and recycle for Industry 3.5 and cleaner semiconductor manufacturing. Resour. Conserv. Recycl. 2022, 182, 106282. [Google Scholar] [CrossRef]
- Ghabach, M.; Davarpanah, A.H. Hydrogen peroxide poisoning. Lancet Gastroenterol. Hepatol. 2020, 5, 418. [Google Scholar] [CrossRef]
- Giaretta, J.E.; Duan, H.; Oveissi, F.; Farajikhah, S.; Dehghani, F.; Naficy, S. Flexible sensors for hydrogen peroxide detection: A critical review. ACS Appl. Mater. Interfaces 2022, 14, 20491–20505. [Google Scholar] [CrossRef]
- Dhara, K.; Mahapatra, D.R. Recent advances in electrochemical nonenzymatic hydrogen peroxide sensors based on nanomaterials: A review. J. Mater. Sci. 2019, 54, 12319–12357. [Google Scholar] [CrossRef]
- Gao, N.; Yu, J.R.; Tian, Q.Y.; Shi, J.F.; Zhang, M.; Chen, S.; Zang, L. Application of PEDOT:PSS and its composites in electrochemical and electronic chemosensors. Chemosensors 2021, 9, 79. [Google Scholar] [CrossRef]
- Burmistrova, N.; Kolontaeva, O.; Duerkop, A. New nanomaterials and luminescent optical sensors for detection of hydrogen peroxide. Chemosensors 2015, 3, 253–273. [Google Scholar] [CrossRef] [Green Version]
- Moßhammer, M.; Kühl, M.; Koren, K. Possibilities and challenges for quantitative optical sensing of hydrogen peroxide. Chemosensors 2017, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.J.; Zhou, Y. Recent progress on anti-humidity strategies of chemiresistive gas sensors. Materials 2022, 15, 8728. [Google Scholar] [CrossRef]
- Zhou, X.C.; Li, Y.L.; Liu, D.X.; Cao, Y.G.; Lu, X.P. Bactericidal effect of plasma jet with helium flowing through 3% hydrogen peroxide against Enterococcus faecalis. Exp. Ther. Med. 2016, 12, 3073–3077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lück, E.; Jager, M. Antimicrobial Food Additives: Characteristics, Uses, Effects; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Walsh, L.J. Safety issues relating to the use of hydrogen peroxide in dentistry. Aust. Dent. J. 2000, 45, 257–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watt, B.E.; Proudfoot, A.T.; Vale, J.A. Hydrogen peroxide poisoning. Toxicol. Rev. 2004, 23, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Han, J.M.; Wang, C.; Yang, X.M.; Pei, J.; Zang, L. Fluorescence ratiometric sensor for trace vapor detection of hydrogen peroxide. ACS Appl. Mater. Interfaces 2014, 6, 8708–8714. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.Q.; Yang, L.; Guo, K.K.; Yang, J.L.; Han, J.M. Expedite fluorescent sensor prototype for hydrogen peroxide detection with long-life test substrates. ACS Omega 2021, 6, 11447–11457. [Google Scholar] [CrossRef]
- Piriya, V.S.A.; Joseph, P.; Daniel, S.C.G.K.; Lakshmanan, S.; Kinoshita, T.; Muthusamy, S. Colorimetric sensors for rapid detection of various analytes. Mater. Sci. Eng. C 2017, 78, 1231–1245. [Google Scholar] [CrossRef]
- Tran, H.V.; Nguyen, T.V.; Nguyen, L.T.N.; Hoang, H.S.; Huynh, C.D. Silver nanoparticles as a bifunctional probe for label-free and reagentless colorimetric hydrogen peroxide chemosensor and cholesterol biosensor. J. Sci. Adv. Mater. Devices 2020, 5, 385–391. [Google Scholar] [CrossRef]
- Liao, C.L.; Shi, J.F.; Zhang, M.; Dalapati, R.; Tian, Q.Y.; Chen, S.; Wang, C.Y.; Zang, L. Optical chemosensors for the gas phase detection of aldehydes: Mechanism, material design, and application. Mater. Adv. 2021, 2, 6213–6245. [Google Scholar] [CrossRef]
- Xu, M.; Bunes, B.R.; Zang, L. Paper-based vapor detection of hydrogen peroxide: Colorimetric sensing with tunable interface. ACS Appl. Mater. Interfaces 2011, 3, 642–647. [Google Scholar] [CrossRef]
- Giaretta, J.E.; Oveissi, F.; Dehghani, F.; Naficy, S. Paper-based, chemiresistive sensor for hydrogen peroxide detection. Adv. Mater. Technol. 2021, 6, 2001148. [Google Scholar] [CrossRef]
- Li, Q.T.; Zeng, W.; Li, Y.Q. Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments. Sens. Actuators B Chem. 2022, 359, 131579. [Google Scholar] [CrossRef]
- Song, P.F.; Wang, T.Q. Application of polyoxometalates in chemiresistive gas sensors: A review. ACS Sens. 2022, 7, 3634–3643. [Google Scholar] [CrossRef]
- Chen, S.; Gao, N.; Bunes, B.R.; Zang, L. Tunable nanofibril heterojunctions for controlling interfacial charge transfer in chemiresistive gas sensors. J. Mater. Chem. C 2019, 7, 13709–13735. [Google Scholar] [CrossRef]
- Xie, X.W.; Gao, N.; Zhu, L.; Hunter, M.; Chen, S.; Zang, L. PEDOT:PSS/PEDOT film chemiresistive sensors for hydrogen peroxide vapor detection under ambient conditions. Chemosensors 2023, 11, 124. [Google Scholar] [CrossRef]
- Elschner, A.; Kirchmeyer, S.; Lvenich, W.; Merker, U.; Reuter, K. PEDOT: Principles and Applications of an Intrinsically Conductive Polymer, 1st ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Qiu, J.Y.; Xia, X.L.; Hu, Z.H.; Zhou, S.; Wang, Y.J.; Wang, Y.H.; Zhang, R.J.; Li, J.; Zhou, Y. Molecular ammonia sensing of PEDOT:PSS/nitrogen doped MXene Ti3C2Tx composite film at room temperature. Nanotechnology 2021, 33, 065501. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, B.Y.; Wang, X.Q.; Zhang, Q.Q.; Liu, J.B.; Jin, Y.H.; Wang, H. Nanoengineering of poly(3,4-ethylenedioxythiophene) for boosting electrochemical applications. Sol. Energy Mater. Sol. Cells 2021, 232, 111357. [Google Scholar] [CrossRef]
- Reisert, S.; Schneider, B.; Geissler, H.; van Gompel, M.; Wagner, P.; Schöning, M.J. Multi-sensor chip for the investigation of different types of metal oxides for the detection of H2O2 in the ppm range. Phys. Status Solidi (A) 2013, 210, 898–904. [Google Scholar] [CrossRef]
- Shahrim, N.A.; Ahmad, Z.; Azman, A.W.; Buys, Y.F.; Sarifuddin, N. Mechanisms for doped PEDOT:PSS electrical conductivity improvement. Mater. Adv. 2021, 2, 7118–7138. [Google Scholar] [CrossRef]
- Bu, J.; Fang, J.; Shi, F.C.; Jiang, Z.Q.; Huang, W.X. Photocatalytic activity of n-doped TiO2 photocatalysts prepared from the molecular precursor (NH4)2TiO(C2O4)2. Chin. J. Chem. Phys. 2010, 23, 95–101. [Google Scholar] [CrossRef]
- Popov, V.I.; Kotin, I.A.; Nebogatikova, N.A.; Smagulova, S.A.; Antonova, I.V. Graphene-PEDOT:PSS humidity sensors for high sensitive, low-cost, highly-reliable, flexible, and printed electronics. Materials 2019, 12, 3477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, F.J.; Rivadeneyra, A.; Becherer, M.; Morales, D.P.; Rodríguez, N. Fabrication and characterization of humidity sensors based on graphene oxide–PEDOT:PSS composites on a flexible substrate. Micromachines 2020, 11, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Gu, Y. Green chemical process for the synthesis of conductive poly(3,4-ethylenedioxythiophene) by nonthermal plasma-activated hydrogen peroxide. Plasma Process. Polym. 2020, 17, 1900153. [Google Scholar] [CrossRef]
- Pendyala, P.; Kim, H.N.; Grewal, H.S.; Chae, U.; Yang, S.; Cho, I.J.; Song, S.M.; Yoon, E.S. Internal-flow-mediated, tunable one-dimensional Cassie-to-Wenzel wetting transition on superhydrophobic microcavity surfaces during evaporation. Nanoscale Microscale Thermophys. Eng. 2019, 23, 275–288. [Google Scholar] [CrossRef]
- Azimi, A.; He, P. Effect of gravity in the Cassie-to-Wenzel transition on a micropatterned surface. MRS Commun. 2020, 10, 129–134. [Google Scholar] [CrossRef]
- Liu, H.Q.; He, Y.N.; Mu, J.P.; Cao, K.Z. Structure engineering of silicon nanoparticles with dual signals for hydrogen peroxide detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 266, 120421. [Google Scholar] [CrossRef]
- Karaarslan, E.S.; Mehmet, B.; Ertan, E.; Cebe, M.A.; Usumez, A. Assessment of changes in color and color parameters of light-cured composite resin after alternative polymerization methods. Eur. J. Dent. 2013, 07, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Liu, C.C.; Jiang, Q.L.; Xu, J.K. Effective approaches to improve the electrical conductivity of PEDOT:PSS: A review. Adv. Electron. Mater. 2015, 1, 1500017. [Google Scholar] [CrossRef]
- Li, Z.Q.; Xie, X.W.; Zhou, M.; Zhu, L.; Fu, C.Q.; Chen, S. High water-stable, hard and strong-adhesive antistatic films from waterborne PEDOT:PSS composites. Synth. Met. 2023, 293, 117290. [Google Scholar] [CrossRef]
Sensor Films | HPV (ppm) Response (ΔR/R0) | ||||
---|---|---|---|---|---|
1.0 | 1.9 | 4.0 | 10.5 | ||
PEDOT:PSS | 0.54 | 5.64 | 8.51 | 10.87 | [26] |
PEDOT:PSS/PEDOT | 0.72 | 5.98 | 13.82 | 17.73 | |
PEDOT:PSS-ATO | 2.28 | 3.06 | 5.93 | 8.52 | This work |
PEDOT:PSS-ATO/PEDOT | 0.29 | 2.19 | 4.42 | 3.68 | This work |
Films | HPV (ppm) | ΔL | Δa | Δb | ΔE |
---|---|---|---|---|---|
PEDOT:PSS | 1.0 | 2.05 | −0.46 | −0.18 | 2.11 |
1.9 | 3.02 | −0.15 | 0.18 | 3.03 | |
4.0 | 3.99 | −1.17 | 0.77 | 4.23 | |
10.5 | 4.58 | −1.20 | 2.00 | 5.13 | |
PEDOT | 1.0 | 0.04 | 0.08 | −0.12 | 0.15 |
1.9 | 0 | −0.03 | 0.23 | 0.23 | |
4.0 | −0.51 | 0.11 | 0.45 | 0.69 | |
10.5 | 0.74 | −0.03 | 0.24 | 0.78 | |
PEDOT:PSSS/PEDOT | 1.0 | 0.51 | 0.11 | −0.45 | 0.69 |
1.9 | 0.88 | 0.91 | −0.83 | 1.51 | |
4.0 | 1.68 | 0.72 | −0.04 | 1.82 | |
10.5 | 1.87 | 0.58 | 0.7 | 2.08 | |
PEDOT:PSS-ATO | 1.0 | 0.73 | 0.15 | 2.49 | 2.60 |
1.9 | 1.99 | −1.04 | 5.34 | 5.79 | |
4.0 | 2.15 | −0.29 | 6.02 | 6.40 | |
10.5 | 2.83 | −1.36 | 6.85 | 7.54 | |
PEDOT:PSS-ATO/PEDOT | 1.0 | −1.35 | 0.36 | −0.7 | 1.57 |
1.9 | 1.76 | −0.81 | 1.65 | 2.55 | |
4.0 | 2.22 | −1.05 | 1.52 | 2.89 | |
10.5 | 2.15 | −0.39 | 2.52 | 3.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Gao, N.; Hunter, M.; Zhu, L.; Yang, X.; Chen, S.; Zang, L. PEDOT Films Doped with Titanyl Oxalate as Chemiresistive and Colorimetric Dual-Mode Sensors for the Detection of Hydrogen Peroxide Vapor. Sensors 2023, 23, 3120. https://doi.org/10.3390/s23063120
Xie X, Gao N, Hunter M, Zhu L, Yang X, Chen S, Zang L. PEDOT Films Doped with Titanyl Oxalate as Chemiresistive and Colorimetric Dual-Mode Sensors for the Detection of Hydrogen Peroxide Vapor. Sensors. 2023; 23(6):3120. https://doi.org/10.3390/s23063120
Chicago/Turabian StyleXie, Xiaowen, Nan Gao, Matthew Hunter, Ling Zhu, Xiaomei Yang, Shuai Chen, and Ling Zang. 2023. "PEDOT Films Doped with Titanyl Oxalate as Chemiresistive and Colorimetric Dual-Mode Sensors for the Detection of Hydrogen Peroxide Vapor" Sensors 23, no. 6: 3120. https://doi.org/10.3390/s23063120
APA StyleXie, X., Gao, N., Hunter, M., Zhu, L., Yang, X., Chen, S., & Zang, L. (2023). PEDOT Films Doped with Titanyl Oxalate as Chemiresistive and Colorimetric Dual-Mode Sensors for the Detection of Hydrogen Peroxide Vapor. Sensors, 23(6), 3120. https://doi.org/10.3390/s23063120