Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network
Abstract
:1. Introduction
2. Single Memristor Device
- (1)
- SET and RESET voltages
- (2)
- On/off ratio (HRS/LRS)
- (3)
- Stability
3. Synaptic Characteristic Investigation in Artificial Synapse
- (1)
- Biological synapses
- (2)
- Artificial synapses
- (3)
- Short-term plasticity (STP) and long-term plasticity (LTP)
- (4)
- Spike time-dependent plasticity (STPD) and spike rate-dependent plasticity (SRPD)
4. Fully Imitated Multi-Sensory Perception
5. Multi-Layer Perceptron for Pattern Recognition
6. Convolutional Neural Network
7. Light-Sensitive Synaptic Device for Image Sensor
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moore, G.E. Cramming More Components onto Integrated Circuits; McGraw-Hill New York: New York, NY, USA, 1965. [Google Scholar]
- Moore, G.E. Lithography and the future of Moore’s law. In Integrated Circuit Metrology, Inspection, and Process Control IX; SPIE: Bellingham, WA, USA, 1995; pp. 2–17. [Google Scholar]
- Lopes, A.M.; Tenreiro Machado, J.A.; Galhano, A.M. Empirical laws and foreseeing the future of technological progress. Entropy 2016, 18, 217. [Google Scholar] [CrossRef] [Green Version]
- Studt, T. Moores law continues into the 21st-century. R&D Mag. 1995, 37, 33. [Google Scholar]
- Zidan, M.A.; Strachan, J.P.; Lu, W.D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29. [Google Scholar] [CrossRef]
- Kim, J.; Paul, A.; Crowell, P.A.; Koester, S.J.; Sapatnekar, S.S.; Wang, J.-P.; Kim, C.H. Spin-based computing: Device concepts, current status, and a case study on a high-performance microprocessor. Proc. IEEE 2014, 103, 106–130. [Google Scholar]
- Mullen, T.J.; Srinivasan, C.; Shuster, M.J.; Horn, M.W.; Andrews, A.M.; Weiss, P.S. Hybrid approaches to nanometer-scale patterning: Exploiting tailored intermolecular interactions. J. Nanoparticle Res. 2008, 10, 1231–1240. [Google Scholar] [CrossRef] [Green Version]
- Kang, W.; Huang, Y.; Zhang, X.; Zhou, Y.; Zhao, W. Skyrmion-electronics: An overview and outlook. Proc. IEEE 2016, 104, 2040–2061. [Google Scholar] [CrossRef]
- Ansari, M.S. High performance recurrent neural network implementations in technologies beyond CMOS. In Proceedings of the 2016 3rd International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 3–5 March 2016; pp. 212–216. [Google Scholar]
- Wang, S.; Liu, X.; Zhou, P. The road for 2D semiconductors in the silicon age. Adv. Mater. 2022, 34, 2106886. [Google Scholar] [CrossRef]
- Kish, L.B. End of Moore’s law: Thermal (noise) death of integration in micro and nano electronics. Phys. Lett. A 2002, 305, 144–149. [Google Scholar] [CrossRef]
- Kalnoor, G.; Agarkhed, J. Artificial intelligence-based technique for intrusion detection in wireless sensor networks. In Artificial Intelligence and Evolutionary Computations in Engineering Systems: Proceedings of ICAIECES 2016; Springer: Berlin/Heidelberg, Germany, 2017; pp. 835–845. [Google Scholar]
- Hashimoto, D.A.; Witkowski, E.; Gao, L.; Meireles, O.; Rosman, G. Artificial intelligence in anesthesiology: Current techniques, clinical applications, and limitations. Anesthesiology 2020, 132, 379–394. [Google Scholar] [CrossRef]
- Karakuş, G.; Değirmencioğlu, A.; Nanda, N.C. Artificial intelligence in echocardiography: Review and limitations including epistemological concerns. Echocardiography 2022, 39, 1044–1053. [Google Scholar] [CrossRef]
- Hornung, A.L.; Hornung, C.M.; Mallow, G.M.; Barajas, J.N.; Espinoza Orías, A.A.; Galbusera, F.; Wilke, H.-J.; Colman, M.; Phillips, F.M.; An, H.S. Artificial intelligence and spine imaging: Limitations, regulatory issues and future direction. Eur. Spine J. 2022, 31, 2007–2021. [Google Scholar] [CrossRef]
- Hassan, S.A.; Akbar, S.; Rehman, A.; Saba, T.; Kolivand, H.; Bahaj, S.A. Recent developments in detection of central serous retinopathy through imaging and artificial intelligence techniques—A review. IEEE Access 2021, 9, 168731–168748. [Google Scholar] [CrossRef]
- Van der Velde, F. A non-von-Neumann computational architecture based on in situ representations: Integrating cognitive grounding, productivity and dynamics. In Biologically Inspired Cognitive Architectures 2012: Proceedings of the Third Annual Meeting of the BICA Society; Springer: Berlin/Heidelberg, Germany, 2013; pp. 333–337. [Google Scholar]
- Zhuge, X.; Wang, J.; Zhuge, F. Photonic synapses for ultrahigh-speed neuromorphic computing. Phys. Status Solidi (RRL) Rapid Res. Lett. 2019, 13, 1900082. [Google Scholar] [CrossRef]
- Feustel, E.A. On the advantages of tagged architecture. IEEE Trans. Comput. 1973, 100, 644–656. [Google Scholar] [CrossRef]
- Zou, X.; Xu, S.; Chen, X.; Yan, L.; Han, Y. Breaking the von Neumann bottleneck: Architecture-level processing-in-memory technology. Sci. China Inf. Sci. 2021, 64, 160404. [Google Scholar] [CrossRef]
- Liu, D.; Yu, H.; Chai, Y. Low-power computing with neuromorphic engineering. Adv. Intell. Syst. 2021, 3, 2000150. [Google Scholar] [CrossRef]
- Chen, W.; Song, L.; Wang, S.; Zhang, Z.; Wang, G.; Hu, G.; Gao, S. Essential Characteristics of Memristors for Neuromorphic Computing. Adv. Electron. Mater. 2022, 9, 2200833. [Google Scholar] [CrossRef]
- Lee, H.; Won, Y.; Oh, J.H. Neuromorphic bioelectronics based on semiconducting polymers. J. Polym. Sci. 2022, 60, 348–376. [Google Scholar] [CrossRef]
- Löffler, S.; Libberton, B.; Richter-Dahlfors, A. Organic bioelectronic tools for biomedical applications. Electronics 2015, 4, 879–908. [Google Scholar] [CrossRef] [Green Version]
- Tee, B.C.-K.; Chortos, A.; Berndt, A.; Nguyen, A.K.; Tom, A.; McGuire, A.; Lin, Z.C.; Tien, K.; Bae, W.-G.; Wang, H. A skin-inspired organic digital mechanoreceptor. Science 2015, 350, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Simon, D.T.; Gabrielsson, E.O.; Tybrandt, K.; Berggren, M. Organic bioelectronics: Bridging the signaling gap between biology and technology. Chem. Rev. 2016, 116, 13009–13041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhu, Y.; Zhu, L.; Chen, C.; Wan, Q. Emerging memristive devices for brain-inspired computing and perception. Front. Nanotechnol. 2022, 4, 43. [Google Scholar] [CrossRef]
- Di Ventra, M.; Pershin, Y.V.; Chua, L.O. Circuit elements with memory: Memristors, memcapacitors, and meminductors. Proc. IEEE 2009, 97, 1717–1724. [Google Scholar] [CrossRef] [Green Version]
- Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Lieber, C.M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841–850. [Google Scholar] [CrossRef]
- Lu, W.; Kim, K.-H.; Chang, T.; Gaba, S. Two-terminal resistive switches (memristors) for memory and logic applications. In Proceedings of the 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011), Yokohama, Japan, 25–28 January 2011; pp. 217–223. [Google Scholar]
- Jiang, S.; Nie, S.; He, Y.; Liu, R.; Chen, C.; Wan, Q. Emerging synaptic devices: From two-terminal memristors to multiterminal neuromorphic transistors. Mater. Today Nano 2019, 8, 100059. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Yan, X. Advances in memristor-based neural networks. Front. Nanotechnol. 2021, 3, 645995. [Google Scholar] [CrossRef]
- Thanh, T.D.; Pham, V.-T.; Volos, C. Implementation of organic RRAM with ink-jet printer: From design to using in RFID-based application. In Mem-Elements for Neuromorphic Circuits with Artificial Intelligence Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 347–360. [Google Scholar]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Prodromakis, T.; Toumazou, C.; Chua, L. Two centuries of memristors. Nat. Mater. 2012, 11, 478–481. [Google Scholar] [CrossRef]
- Liu, P.; Liu, A.T.; Kozawa, D.; Dong, J.; Yang, J.F.; Koman, V.B.; Saccone, M.; Wang, S.; Son, Y.; Wong, M.H. Autoperforation of 2D materials for generating two-terminal memristive Janus particles. Nat. Mater. 2018, 17, 1005–1012. [Google Scholar] [CrossRef]
- Sun, W.; Gao, B.; Chi, M.; Xia, Q.; Yang, J.J.; Qian, H.; Wu, H. Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 2019, 10, 3453. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Yang, S.; Zeng, M.; Wang, L.; Wei, J.; Xu, Z.; Wang, W.; Bai, X. Bipolar electrochemical mechanism for mass transfer in nanoionic resistive memories. Adv. Mater. 2014, 26, 3649–3654. [Google Scholar] [CrossRef]
- Butkus, J.; Vashishtha, P.; Chen, K.; Gallaher, J.K.; Prasad, S.K.; Metin, D.Z.; Laufersky, G.; Gaston, N.; Halpert, J.E.; Hodgkiss, J.M. The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals. Chem. Mater. 2017, 29, 3644–3652. [Google Scholar] [CrossRef]
- Ting, Y.H.; Chen, J.Y.; Huang, C.W.; Huang, T.K.; Hsieh, C.Y.; Wu, W.W. Observation of resistive switching behavior in crossbar core–shell Ni/NiO nanowires memristor. Small 2018, 14, 1703153. [Google Scholar] [CrossRef]
- Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Choi, S.; Yang, J.; Wang, G. Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv. Mater. 2020, 32, 2004659. [Google Scholar] [CrossRef]
- Xiao, X.; Hu, J.; Tang, S.; Yan, K.; Gao, B.; Chen, H.; Zou, D. Recent advances in halide perovskite memristors: Materials, structures, mechanisms, and applications. Adv. Mater. Technol. 2020, 5, 1900914. [Google Scholar] [CrossRef]
- Dueñas, S.; Castán, H.; Ossorio, O.; García, H. Dynamics of set and reset processes on resistive switching memories. Microelectron. Eng. 2019, 216, 111032. [Google Scholar] [CrossRef]
- Shan, X.; Zhao, C.; Wang, X.; Wang, Z.; Fu, S.; Lin, Y.; Zeng, T.; Zhao, X.; Xu, H.; Zhang, X. Plasmonic Optoelectronic Memristor Enabling Fully Light-Modulated Synaptic Plasticity for Neuromorphic Vision. Adv. Sci. 2022, 9, 2104632. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, H.; Xia, Q.; Ye, C.; Wei, X.; Wang, J.; Zhang, L.; Zhu, L.Q. Role of oxygen vacancies at the TiO2/HfO2 interface in flexible oxide-based resistive switching memory. Adv. Electron. Mater. 2019, 5, 1800833. [Google Scholar] [CrossRef]
- Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B.D.; Adam, G.C.; Likharev, K.K.; Strukov, D.B. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015, 521, 61–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, C.; Deng, T.; Zhang, J.; Shen, L.; He, P.; Wei, W.; Wang, H. Enhanced resistive switching performance for bilayer HfO2/TiO2 resistive random access memory. Semicond. Sci. Technol. 2016, 31, 105005. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; Manna, L. What defines a halide perovskite? ACS Energy Lett. 2020, 5, 604–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, T.; Yang, Y.; Gong, X. Recent advancements and challenges for low-toxicity perovskite materials. ACS Appl. Mater. Interfaces 2020, 12, 26776–26811. [Google Scholar] [CrossRef]
- Cheng, X.F.; Qian, W.H.; Wang, J.; Yu, C.; He, J.H.; Li, H.; Xu, Q.F.; Chen, D.Y.; Li, N.J.; Lu, J.M. Environmentally Robust Memristor Enabled by Lead-Free Double Perovskite for High-Performance Information Storage. Small 2019, 15, 1905731. [Google Scholar] [CrossRef]
- John, R.A.; Demirağ, Y.; Shynkarenko, Y.; Berezovska, Y.; Ohannessian, N.; Payvand, M.; Zeng, P.; Bodnarchuk, M.I.; Krumeich, F.; Kara, G. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 2022, 13, 2074. [Google Scholar] [CrossRef]
- Ge, S.; Guan, X.; Wang, Y.; Lin, C.H.; Cui, Y.; Huang, Y.; Zhang, X.; Zhang, R.; Yang, X.; Wu, T. Low-dimensional lead-free inorganic perovskites for resistive switching with ultralow bias. Adv. Funct. Mater. 2020, 30, 2002110. [Google Scholar] [CrossRef]
- Park, H.L.; Kim, M.H.; Kim, H.; Lee, S.H. Self-Selective Organic Memristor by Engineered Conductive Nanofilament Diffusion for Realization of Practical Neuromorphic System. Adv. Electron. Mater. 2021, 7, 2100299. [Google Scholar] [CrossRef]
- Lee, H.S.; Sangwan, V.K.; Rojas, W.A.G.; Bergeron, H.; Jeong, H.Y.; Yuan, J.; Su, K.; Hersam, M.C. Dual-Gated MoS2 Memtransistor Crossbar Array. Adv. Funct. Mater. 2020, 30, 2003683. [Google Scholar] [CrossRef]
- Yin, L.; Cheng, R.; Wang, Z.; Wang, F.; Sendeku, M.G.; Wen, Y.; Zhan, X.; He, J. Two-dimensional unipolar memristors with logic and memory functions. Nano Lett. 2020, 20, 4144–4152. [Google Scholar] [CrossRef]
- Jeon, Y.-R.; Abbas, Y.; Sokolov, A.S.; Kim, S.; Ku, B.; Choi, C. Study of in situ silver migration in amorphous boron nitride CBRAM device. ACS Appl. Mater. Interfaces 2019, 11, 23329–23336. [Google Scholar] [CrossRef]
- Moon, G.; Min, S.Y.; Han, C.; Lee, S.H.; Ahn, H.; Seo, S.Y.; Ding, F.; Kim, S.; Jo, M.H. Atomically Thin Synapse Networks on Van Der Waals Photo-Memtransistors. Adv. Mater. 2022, 35, 2203481. [Google Scholar] [CrossRef]
- Khot, A.C.; Dongale, T.D.; Nirmal, K.A.; Sung, J.H.; Lee, H.J.; Nikam, R.D.; Kim, T.G. Amorphous boron nitride memristive device for high-density memory and neuromorphic computing applications. ACS Appl. Mater. Interfaces 2022, 14, 10546–10557. [Google Scholar] [CrossRef]
- Wang, L.; Liao, W.; Wong, S.L.; Yu, Z.G.; Li, S.; Lim, Y.F.; Feng, X.; Tan, W.C.; Huang, X.; Chen, L. Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 2019, 29, 1901106. [Google Scholar] [CrossRef]
- Sangwan, V.K.; Lee, H.-S.; Bergeron, H.; Balla, I.; Beck, M.E.; Chen, K.-S.; Hersam, M.C. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018, 554, 500–504. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Ge, J.; Chen, W.; Cao, X.; Diao, S.; Liu, Z.; Pan, S. Reliable memristor based on ultrathin native silicon oxide. ACS Appl. Mater. Interfaces 2022, 14, 21207–21216. [Google Scholar] [CrossRef]
- Sung, S.H.; Kim, T.J.; Shin, H.; Im, T.H.; Lee, K.J. Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse. Nat. Commun. 2022, 13, 2811. [Google Scholar] [CrossRef]
- Li, Y.; Loh, L.; Li, S.; Chen, L.; Li, B.; Bosman, M.; Ang, K.-W. Anomalous resistive switching in memristors based on two-dimensional palladium diselenide using heterophase grain boundaries. Nat. Electron. 2021, 4, 348–356. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, G.-Q.; Zhao, X.; Li, Y.; Zhang, M.; Wu, Z.; Wu, W.; Sun, H.; Guo, Y.; Wang, L. Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 2021, 12, 7232. [Google Scholar] [CrossRef]
- Lee, J.; Ryu, J.-H.; Kim, B.; Hussain, F.; Mahata, C.; Sim, E.; Ismail, M.; Abbas, Y.; Abbas, H.; Lee, D.K. Synaptic characteristics of amorphous boron nitride-based memristors on a highly doped silicon substrate for neuromorphic engineering. ACS Appl. Mater. Interfaces 2020, 12, 33908–33916. [Google Scholar] [CrossRef]
- Wang, Z.; Joshi, S.; Savel’ev, S.E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, T.-J.; Kim, S.-K.; Seong, T.-Y. Sputtering-deposited amorphous SrVOx-based memristor for use in neuromorphic computing. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.; Huang, A.; Zhang, J.; Ji, Y.; Zhang, J.; Chen, X.; Geng, X.; Hu, Q.; Wang, M.; Xiao, Z. Artificial synapses with a sponge-like double-layer porous oxide memristor. NPG Asia Mater. 2021, 13, 3. [Google Scholar] [CrossRef]
- Jung, H.; Kim, Y.-H.; Kim, J.; Yoon, T.-S.; Kang, C.J.; Yoon, S.; Lee, H.H. Analog Memristive Characteristics of Mesoporous Silica–Titania Nanocomposite Device Concurrent with Selection Diode Property. ACS Appl. Mater. Interfaces 2019, 11, 36807–36816. [Google Scholar] [CrossRef]
- Wang, W.; Wang, M.; Ambrosi, E.; Bricalli, A.; Laudato, M.; Sun, Z.; Chen, X.; Ielmini, D. Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices. Nat. Commun. 2019, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Cai, S.; Pan, C.; Wang, C.; Lian, X.; Zhuo, Y.; Xu, K.; Cao, T.; Pan, X.; Wang, B. Robust memristors based on layered two-dimensional materials. Nat. Electron. 2018, 1, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Kim, T.; Hu, S.; Kim, J.; Kwak, J.Y.; Park, J.; Park, J.K.; Kim, I.; Lee, S.; Kim, S. Cluster-type analogue memristor by engineering redox dynamics for high-performance neuromorphic computing. Nat. Commun. 2022, 13, 4040. [Google Scholar] [CrossRef]
- Wang, G.; Guan, Y.; Wang, Y.; Ding, Y.; Yang, L. Direct Laser Irradiation and Modification of 2D Te for Development of Volatile Memristor. Materials 2023, 16, 738. [Google Scholar] [CrossRef]
- Xie, J.; Afshari, S.; Sanchez Esqueda, I. Hexagonal boron nitride (h-BN) memristor arrays for analog-based machine learning hardware. Npj 2d Mater. Appl. 2022, 6, 50. [Google Scholar] [CrossRef]
- Wei, H.; Shi, R.; Sun, L.; Yu, H.; Gong, J.; Liu, C.; Xu, Z.; Ni, Y.; Xu, J.; Xu, W. Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics. Nat. Commun. 2021, 12, 1068. [Google Scholar] [CrossRef]
- Li, S.; Pam, M.E.; Li, Y.; Chen, L.; Chien, Y.C.; Fong, X.; Chi, D.; Ang, K.W. Wafer-Scale 2D Hafnium Diselenide Based Memristor Crossbar Array for Energy-Efficient Neural Network Hardware. Adv. Mater. 2022, 34, 2103376. [Google Scholar] [CrossRef]
- Kim, S.H.; Baek, G.W.; Yoon, J.; Seo, S.; Park, J.; Hahm, D.; Chang, J.H.; Seong, D.; Seo, H.; Oh, S. A bioinspired stretchable sensory-neuromorphic system. Adv. Mater. 2021, 33, 2104690. [Google Scholar] [CrossRef]
- Sebastian, A.; Pendurthi, R.; Kozhakhmetov, A.; Trainor, N.; Robinson, J.A.; Redwing, J.M.; Das, S. Two-dimensional materials-based probabilistic synapses and reconfigurable neurons for measuring inference uncertainty using Bayesian neural networks. Nat. Commun. 2022, 13, 6139. [Google Scholar] [CrossRef]
- Ding, G.; Yang, B.; Chen, R.S.; Mo, W.A.; Zhou, K.; Liu, Y.; Shang, G.; Zhai, Y.; Han, S.T.; Zhou, Y. Reconfigurable 2D WSe2-Based Memtransistor for Mimicking Homosynaptic and Heterosynaptic Plasticity. Small 2021, 17, 2103175. [Google Scholar] [CrossRef]
- Yoon, J.H.; Wang, Z.; Kim, K.M.; Wu, H.; Ravichandran, V.; Xia, Q.; Hwang, C.S.; Yang, J.J. An artificial nociceptor based on a diffusive memristor. Nat. Commun. 2018, 9, 417. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Xu, M.; Jia, S.; Wang, B.; Xu, L.; Wang, X.; Liu, H.; Liu, Y.; Guo, Y.; Wang, L. A new opportunity for the emerging tellurium semiconductor: Making resistive switching devices. Nat. Commun. 2021, 12, 6081. [Google Scholar] [CrossRef]
- Saleem, A.; Kumar, D.; Singh, A.; Rajasekaran, S.; Tseng, T.Y. Oxygen Vacancy Transition in HfOx-Based Flexible, Robust, and Synaptic Bi-Layer Memristor for Neuromorphic and Wearable Applications. Adv. Mater. Technol. 2022, 7, 2101208. [Google Scholar] [CrossRef]
- Park, S.-O.; Jeong, H.; Park, J.; Bae, J.; Choi, S. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing. Nat. Commun. 2022, 13, 2888. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Z.; Liao, Q.; Shan, H.; Chen, J.; Zhou, Y.; Zhou, L.; Chen, X.; Roy, V.A.; Wang, Z. Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching. Adv. Mater. 2018, 30, 1800327. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Y.; Han, G.; Hwang, G.; Jiang, J.; Joo, B.; Watanabe, K.; Taniguchi, T.; Kim, Y.-M.; Yu, W.J. Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 2019, 10, 3161. [Google Scholar] [CrossRef] [Green Version]
- You, B.K.; Byun, M.; Kim, S.; Lee, K.J. Self-structured conductive filament nanoheater for chalcogenide phase transition. ACS Nano 2015, 9, 6587–6594. [Google Scholar] [CrossRef] [PubMed]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M.; Siegelbaum, S.; Hudspeth, A.J.; Mack, S. Principles of Neural Science; McGraw-Hill New York: New York, NY, USA, 2000; Volume 4. [Google Scholar]
- Aisa, B.; Mingus, B.; O’Reilly, R. The emergent neural modeling system. Neural Netw. 2008, 21, 1146–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benfenati, F. Synaptic plasticity and the neurobiology of learning and memory. Acta Biomed 2007, 78 (Suppl S1), 58–66. [Google Scholar] [PubMed]
- Wan, Q.; Sharbati, M.T.; Erickson, J.R.; Du, Y.; Xiong, F. Emerging artificial synaptic devices for neuromorphic computing. Adv. Mater. Technol. 2019, 4, 1900037. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Yuan, F.; Shen, X.; Wang, Z.; Rao, M.; He, Y.; Sun, Y.; Li, X.; Zhang, W.; Li, Y. Bridging biological and artificial neural networks with emerging neuromorphic devices: Fundamentals, progress, and challenges. Adv. Mater. 2019, 31, 1902761. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chen, J.; Chen, P.H.; Chang, T.C.; Wu, Y.; Eshraghian, J.K.; Moon, J.; Yoo, S.; Wang, Y.H.; Chen, W.C. Adaptive synaptic memory via lithium ion modulation in RRAM devices. Small 2020, 16, 2003964. [Google Scholar] [CrossRef]
- Abbott, L.F.; Nelson, S.B. Synaptic plasticity: Taming the beast. Nat. Neurosci. 2000, 3, 1178–1183. [Google Scholar] [CrossRef]
- Shirahata, Y.; Shiina, R.; González, D.L.; Franke, K.J.; Wada, E.; Itoh, M.; Pertsev, N.A.; van Dijken, S.; Taniyama, T. Electric-field switching of perpendicularly magnetized multilayers. NPG Asia Mater. 2015, 7, e198. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.J.; Lee, S.; Lee, S.; Balamurugan, K.; Yoon, C.; Jang, J.T.; Kim, S.-H.; Kwon, D.-H.; Kim, M.; Ahn, J.-P. Synaptic devices based on two-dimensional layered single-crystal chromium thiophosphate (CrPS4). NPG Asia Mater. 2018, 10, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Caporale, N.; Dan, Y. Spike timing–dependent plasticity: A Hebbian learning rule. Annu. Rev. Neurosci. 2008, 31, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Cho, H.; Kim, Y.H.; Kim, Y.T.; Wolf, C.; Park, C.G.; Lee, T.W. Organometal halide perovskite artificial synapses. Adv. Mater. 2016, 28, 5916–5922. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, Y.; Zhang, J.; Xu, L.; Wang, Q.; Sun, H.; Tong, H.; Cheng, X.; Miao, X. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci. Rep. 2014, 4, 4906. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.; Baek, J.H.; Ren, F.; Pearton, S.J.; Lee, G.H.; Kim, J. Artificial neuron and synapse devices based on 2D materials. Small 2021, 17, 2100640. [Google Scholar] [CrossRef]
- Li, X.; Tang, J.; Zhang, Q.; Gao, B.; Yang, J.J.; Song, S.; Wu, W.; Zhang, W.; Yao, P.; Deng, N. Power-efficient neural network with artificial dendrites. Nat. Nanotechnol. 2020, 15, 776–782. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, Y.; Huang, S.; Xing, X.; Lv, Z.; Wang, J.; Yang, J.-Q.; Zhang, G.; Zhou, Y.; Han, S.-T. Memristor-based biomimetic compound eye for real-time collision detection. Nat. Commun. 2021, 12, 5979. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, X.; Wang, R.; Wang, M.; Chen, P.; Cheng, L.; Wu, Z.; Wang, Y.; Liu, Q.; Liu, M. A Heterogeneously Integrated Spiking Neuron Array for Multimode-Fused Perception and Object Classification. Adv. Mater. 2022, 34, 2200481. [Google Scholar] [CrossRef]
- Xu, R.; Jang, H.; Lee, M.-H.; Amanov, D.; Cho, Y.; Kim, H.; Park, S.; Shin, H.-J.; Ham, D. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 2019, 19, 2411–2417. [Google Scholar] [CrossRef]
- Ranganathan, K.; Fiegenbaum-Raz, M.; Ismach, A. Large-Scale and Robust Multifunctional Vertically Aligned MoS2 Photo-Memristors. Adv. Funct. Mater. 2020, 30, 2005718. [Google Scholar] [CrossRef]
- Shi, Y.; Liang, X.; Yuan, B.; Chen, V.; Li, H.; Hui, F.; Yu, Z.; Yuan, F.; Pop, E.; Wong, H.-S.P. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 2018, 1, 458–465. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, Q.; Chen, A.P.; Zhao, J.; Zhou, Z.; Wang, J.; Wang, H.; Zhang, L.; Li, X.; Xiao, Z. Vacancy-induced synaptic behavior in 2D WS2 nanosheet–based memristor for low-power neuromorphic computing. Small 2019, 15, 1901423. [Google Scholar] [CrossRef]
- Tran, M.D.; Kim, H.; Kim, J.S.; Doan, M.H.; Chau, T.K.; Vu, Q.A.; Kim, J.H.; Lee, Y.H. Two-terminal multibit optical memory via van der Waals heterostructure. Adv. Mater. 2019, 31, 1807075. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, D.; Liang, X.; Lu, W.D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 2019, 18, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, H.; Krylyuk, S.; Milligan, C.A.; Zhu, Y.; Zemlyanov, D.Y.; Bendersky, L.A.; Burton, B.P.; Davydov, A.V.; Appenzeller, J. Electric-field induced structural transition in vertical MoTe2-and Mo1–x W x Te2-based resistive memories. Nat. Mater. 2019, 18, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, V.K.; Jariwala, D.; Kim, I.S.; Chen, K.-S.; Marks, T.J.; Lauhon, L.J.; Hersam, M.C. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 2015, 10, 403–406. [Google Scholar] [CrossRef]
- Yan, X.; Qin, C.; Lu, C.; Zhao, J.; Zhao, R.; Ren, D.; Zhou, Z.; Wang, H.; Wang, J.; Zhang, L. Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing. ACS Appl. Mater. Interfaces 2019, 11, 48029–48038. [Google Scholar] [CrossRef]
- Bessonov, A.A.; Kirikova, M.N.; Petukhov, D.I.; Allen, M.; Ryhänen, T.; Bailey, M.J. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 2015, 14, 199–204. [Google Scholar] [CrossRef]
- Li, B.; Li, S.; Wang, H.; Chen, L.; Liu, L.; Feng, X.; Li, Y.; Chen, J.; Gong, X.; Ang, K.W. An electronic synapse based on 2D ferroelectric CuInP2S6. Adv. Electron. Mater. 2020, 6, 2000760. [Google Scholar] [CrossRef]
- Wang, H.; Lu, W.; Hou, S.; Yu, B.; Zhou, Z.; Xue, Y.; Guo, R.; Wang, S.; Zeng, K.; Yan, X. A 2D-SnSe film with ferroelectricity and its bio-realistic synapse application. Nanoscale 2020, 12, 21913–21922. [Google Scholar] [CrossRef]
- Cai, H.; Ma, G.; He, Y.; Lu, L.; Zhang, J.; Wang, H. Compact pure phase CsPbBr3 perovskite film with significantly improved stability for high-performance memory. Ceram. Int. 2019, 45, 1150–1155. [Google Scholar] [CrossRef]
- Kang, K.; Ahn, H.; Song, Y.; Lee, W.; Kim, J.; Kim, Y.; Yoo, D.; Lee, T. High-Performance Solution-Processed Organo-Metal Halide Perovskite Unipolar Resistive Memory Devices in a Cross-Bar Array Structure. Adv. Mater. 2019, 31, 1804841. [Google Scholar] [CrossRef]
- Zeng, F.; Guo, Y.; Hu, W.; Tan, Y.; Zhang, X.; Feng, J.; Tang, X. Opportunity of the lead-free all-inorganic Cs3Cu2I5 perovskite film for memristor and neuromorphic computing applications. ACS Appl. Mater. Interfaces 2020, 12, 23094–23101. [Google Scholar] [CrossRef]
- Yang, J.-M.; Choi, E.-S.; Kim, S.-Y.; Kim, J.-H.; Park, J.-H.; Park, N.-G. Perovskite-related (CH 3 NH 3) 3 Sb 2 Br 9 for forming-free memristor and low-energy-consuming neuromorphic computing. Nanoscale 2019, 11, 6453–6461. [Google Scholar] [CrossRef]
- Li, C.; Belkin, D.; Li, Y.; Yan, P.; Hu, M.; Ge, N.; Jiang, H.; Montgomery, E.; Lin, P.; Wang, Z. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 2018, 9, 2385. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Tang, J.; Li, X.; Liang, X.; Liu, Z.; Li, Y.; Xi, Y.; Yao, P.; Hao, Z.; Gao, B. A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat. Electron. 2022, 5, 672–681. [Google Scholar] [CrossRef]
- Jiang, H.; Belkin, D.; Savel’ev, S.E.; Lin, S.; Wang, Z.; Li, Y.; Joshi, S.; Midya, R.; Li, C.; Rao, M. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 2017, 8, 882. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Li, C.; Zhang, R.; Yan, P.; Lin, P.; Li, Y.; Yang, J.J.; Holcomb, D.; Xia, Q. A provable key destruction scheme based on memristive crossbar arrays. Nat. Electron. 2018, 1, 548–554. [Google Scholar] [CrossRef]
- Bayat, F.M.; Prezioso, M.; Chakrabarti, B.; Nili, H.; Kataeva, I.; Strukov, D. Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 2018, 9, 2331. [Google Scholar] [CrossRef]
- Kiani, F.; Yin, J.; Wang, Z.; Yang, J.J.; Xia, Q. A fully hardware-based memristive multilayer neural network. Sci. Adv. 2021, 7, eabj4801. [Google Scholar] [CrossRef]
- Mahmoodi, M.; Prezioso, M.; Strukov, D. Versatile stochastic dot product circuits based on nonvolatile memories for high performance neurocomputing and neurooptimization. Nat. Commun. 2019, 10, 5113. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Tan, S.H.; Li, Z.; Kim, Y.; Choi, C.; Chen, P.-Y.; Yeon, H.; Yu, S.; Kim, J. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 2018, 17, 335–340. [Google Scholar] [CrossRef]
- Seo, S.; Jo, S.-H.; Kim, S.; Shim, J.; Oh, S.; Kim, J.-H.; Heo, K.; Choi, J.-W.; Choi, C.; Oh, S. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 2018, 9, 5106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, R.; Wen, B.; Kazemi, A.; Zhao, Y.; Laguna, A.F.; Lin, R.; Wong, N.; Niemier, M.; Hu, X.S.; Sheng, X. Experimentally validated memristive memory augmented neural network with efficient hashing and similarity search. Nat. Commun. 2022, 13, 6284. [Google Scholar] [CrossRef] [PubMed]
- Yao, P.; Wu, H.; Gao, B.; Tang, J.; Zhang, Q.; Zhang, W.; Yang, J.J.; Qian, H. Fully hardware-implemented memristor convolutional neural network. Nature 2020, 577, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hu, M.; Li, Y.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang, J.; Song, W.; Dávila, N.; Graves, C.E. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 2018, 1, 52–59. [Google Scholar] [CrossRef]
- Yang, J.Q.; Wang, R.; Ren, Y.; Mao, J.Y.; Wang, Z.P.; Zhou, Y.; Han, S.T. Neuromorphic Engineering: From Biological to Spike-Based Hardware Nervous Systems. Adv. Mater. 2020, 32, 2003610. [Google Scholar] [CrossRef]
- Kumar, D.; Shrivastava, S.; Saleem, A.; Singh, A.; Lee, H.; Wang, Y.-H.; Tseng, T.-Y. Highly efficient invisible TaO x/ZTO bilayer memristor for neuromorphic computing and image sensing. ACS Appl. Electron. Mater. 2022, 4, 2180–2190. [Google Scholar] [CrossRef]
- Lu, X.F.; Zhang, Y.; Wang, N.; Luo, S.; Peng, K.; Wang, L.; Chen, H.; Gao, W.; Chen, X.H.; Bao, Y. Exploring low power and ultrafast memristor on p-type van der Waals SnS. Nano Lett. 2021, 21, 8800–8807. [Google Scholar] [CrossRef]
- Liu, X.; Zeng, Z. Memristor crossbar architectures for implementing deep neural networks. Complex Intell. Syst. 2022, 8, 787–802. [Google Scholar] [CrossRef]
- Sheridan, P.M.; Cai, F.; Du, C.; Ma, W.; Zhang, Z.; Lu, W.D. Sparse coding with memristor networks. Nat. Nanotechnol. 2017, 12, 784–789. [Google Scholar] [CrossRef]
- Lim, D.-H.; Wu, S.; Zhao, R.; Lee, J.-H.; Jeong, H.; Shi, L. Spontaneous sparse learning for PCM-based memristor neural networks. Nat. Commun. 2021, 12, 319. [Google Scholar] [CrossRef]
- Moon, J.; Ma, W.; Shin, J.H.; Cai, F.; Du, C.; Lee, S.H.; Lu, W.D. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2019, 2, 480–487. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Song, W.; Rao, M.; Belkin, D.; Li, Y.; Yan, P.; Jiang, H.; Lin, P.; Hu, M. Reinforcement learning with analogue memristor arrays. Nat. Electron. 2019, 2, 115–124. [Google Scholar] [CrossRef]
- Graves, C.E.; Li, C.; Sheng, X.; Miller, D.; Ignowski, J.; Kiyama, L.; Strachan, J.P. In-memory computing with memristor content addressable memories for pattern matching. Adv. Mater. 2020, 32, 2003437. [Google Scholar] [CrossRef]
- Seo, S.; Lee, J.J.; Lee, R.G.; Kim, T.H.; Park, S.; Jung, S.; Lee, H.K.; Andreev, M.; Lee, K.B.; Jung, K.S. An Optogenetics-Inspired Flexible van der Waals Optoelectronic Synapse and its Application to a Convolutional Neural Network. Adv. Mater. 2021, 33, 2102980. [Google Scholar] [CrossRef]
- Yeon, H.; Lin, P.; Choi, C.; Tan, S.H.; Park, Y.; Lee, D.; Lee, J.; Xu, F.; Gao, B.; Wu, H. Alloying conducting channels for reliable neuromorphic computing. Nat. Nanotechnol. 2020, 15, 574–579. [Google Scholar] [CrossRef]
- Kim, S.; Choi, Y.Y.; Kim, T.; Kim, Y.M.; Ho, D.H.; Choi, Y.J.; Roe, D.G.; Lee, J.-H.; Park, J.; Choi, J.-W. A biomimetic ocular prosthesis system: Emulating autonomic pupil and corneal reflections. Nat. Commun. 2022, 13, 6760. [Google Scholar] [CrossRef]
- Karbalaei Akbari, M.; Zhuiykov, S. A bioinspired optoelectronically engineered artificial neurorobotics device with sensorimotor functionalities. Nat. Commun. 2019, 10, 3873. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.R.; Trung, T.Q.; Hwang, B.-U.; Lee, N.-E. A flexible artificial intrinsic-synaptic tactile sensory organ. Nat. Commun. 2020, 11, 2753. [Google Scholar] [CrossRef]
- Lee, H.R.; Lee, D.; Oh, J.H. A Hippocampus-Inspired Dual-Gated Organic Artificial Synapse for Simultaneous Sensing of a Neurotransmitter and Light. Adv. Mater. 2021, 33, 2100119. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, T.; Dang, B.; Bao, L.; Xu, L.; Cheng, C.; Yang, Z.; Huang, R.; Yang, Y. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 2022, 5, 761–773. [Google Scholar] [CrossRef]
- Sarkar, T.; Lieberth, K.; Pavlou, A.; Frank, T.; Mailaender, V.; McCulloch, I.; Blom, P.W.; Torricelli, F.; Gkoupidenis, P. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 2022, 5, 774–783. [Google Scholar] [CrossRef]
- Tian, H.; Guo, Q.; Xie, Y.; Zhao, H.; Li, C.; Cha, J.J.; Xia, F.; Wang, H. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 2016, 28, 4991–4997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, S.; Kang, B.-S.; Lee, J.-J.; Ryu, H.-J.; Kim, S.; Kim, H.; Oh, S.; Shim, J.; Heo, K.; Oh, S. Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition. Nat. Commun. 2020, 11, 3936. [Google Scholar] [CrossRef] [PubMed]
- Roe, D.G.; Kim, S.; Choi, Y.Y.; Woo, H.; Kang, M.S.; Song, Y.J.; Ahn, J.H.; Lee, Y.; Cho, J.H. Biologically plausible artificial synaptic array: Replicating Ebbinghaus’ memory curve with selective attention. Adv. Mater. 2021, 33, 2007782. [Google Scholar] [CrossRef]
- Liu, H.; Dong, Y.; Galib, M.; Cai, Z.; Stan, L.; Zhang, L.; Suwardi, A.; Wu, J.; Cao, J.; Tan, C.K.I. Controlled Formation of Conduction Channels in Memristive Devices Observed by X-ray Multimodal Imaging. Adv. Mater. 2022, 34, 2203209. [Google Scholar] [CrossRef]
- Dutta, S.; Detorakis, G.; Khanna, A.; Grisafe, B.; Neftci, E.; Datta, S. Neural sampling machine with stochastic synapse allows brain-like learning and inference. Nat. Commun. 2022, 13, 2571. [Google Scholar] [CrossRef]
- Yang, F.-S.; Li, M.; Lee, M.-P.; Ho, I.-Y.; Chen, J.-Y.; Ling, H.; Li, Y.; Chang, J.-K.; Yang, S.-H.; Chang, Y.-M. Oxidation-boosted charge trapping in ultra-sensitive van der Waals materials for artificial synaptic features. Nat. Commun. 2020, 11, 2972. [Google Scholar] [CrossRef]
- Yu, R.; He, L.; Gao, C.; Zhang, X.; Li, E.; Guo, T.; Li, W.; Chen, H. Programmable ferroelectric bionic vision hardware with selective attention for high-precision image classification. Nat. Commun. 2022, 13, 7019. [Google Scholar] [CrossRef]
- Choi, C.; Kim, H.; Kang, J.-H.; Song, M.-K.; Yeon, H.; Chang, C.S.; Suh, J.M.; Shin, J.; Lu, K.; Park, B.-I. Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence. Nat. Electron. 2022, 5, 386–393. [Google Scholar] [CrossRef]
- Zhou, F.; Zhou, Z.; Chen, J.; Choy, T.H.; Wang, J.; Zhang, N.; Lin, Z.; Yu, S.; Kang, J.; Wong, H.-S.P. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782. [Google Scholar] [CrossRef]
Device Type | Structure | Mechanism | Set Voltage [V] | Operation Current [A] | Endurance [Cycle] | Retention [s] | Synaptic Functions | Reference |
---|---|---|---|---|---|---|---|---|
Vertical | Cu/MoS2/Au | ECM (Filament Formation) | 0.2 | 10−3 | 20 | 1.8 × 104 | LTM, STDP | [105] |
Vertical | Au/Ag/MoS2/Si | Filament Formation | −1.5 | 10−3 | 10 | 2 × 104 | LTD, LTP | [106] |
Vertical | Metal/h-BN/Metal | Filament Formation | 0.6 | 10−9 | 5 × 102 | N/A | STM, LTM, PPF, STDP | [107] |
Vertical | Pd/WS2/Pt | Vacancy Migration | 0.6 | 10−6 | 75 | 1.8 × 104 | STDP, PPF | [108] |
Lateral | MoS2/h-BN/Graphene | Charge Trapping | −0.5 | 106 | 104 | 3.5 × 104 | LTP | [109] |
Lateral | Au/MoS2/Au | Phase Transition | 3.0 | 10−5 | 103 | 7 × 103 | LTM, Synaptic Cooperation | [110] |
Vertical | MoTe2 | Phase Transition | 2.3 | 10−4 | N/A | 105~106 | Memristive Switching | [111] |
Lateral | Au/MoS2/Au | Defect Migration | 80 | 10−4 | 4.75 × 102 | 9 × 104 | LTM, STDP | [112] |
Heterojunction | Ag/ZrO2/WS2/Pt | Filament Formation | 0.16 | 10−4 | 109 | 4 × 104 | LTM, PPF, STDP | [113] |
Heterojunction | Ag/MoOx/MoS2/Ag | Vacancy Migration | 0.2 | 10−3 | 104 | 103 | STM, LTM | [114] |
Lateral | Au/CuInP2S6/Ti | Ferroelectric | 1.5 | 10−8 | >100 | 2 × 103 | STP, STDP | [115] |
Lateral | SnSe | Ferroelectric | 2 | 10−2 | >230 | >104 | LTP, STDP, STP, PPF | [116] |
Vertical | FTO/CsPbBr3/Au | Formation of VBr Filament | 1.5 | 10−3 | 102 | 103 | Memristive Switching | [117] |
Vertical | Au/MAPbI3/Au | Formation of VI Filament | 2.7 | 108 | 103 | 104 | Memristive Switching | [118] |
Vertical | Ag/PMMA/Cs3CuI5 | Filament Formation | 0.6 | 10−2 | 102 | 104 | LTP, LTD | [119] |
Vertical | Ag/PMMA/MA3Sb2Br9 | Formation of Sn/VBr Filament | 0.5 | 10−2 | 300 | 104 | LTP, LTD, STDP, EPSC, IPSC | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seok, H.; Son, S.; Jathar, S.B.; Lee, J.; Kim, T. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network. Sensors 2023, 23, 3118. https://doi.org/10.3390/s23063118
Seok H, Son S, Jathar SB, Lee J, Kim T. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network. Sensors. 2023; 23(6):3118. https://doi.org/10.3390/s23063118
Chicago/Turabian StyleSeok, Hyunho, Shihoon Son, Sagar Bhaurao Jathar, Jaewon Lee, and Taesung Kim. 2023. "Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network" Sensors 23, no. 6: 3118. https://doi.org/10.3390/s23063118
APA StyleSeok, H., Son, S., Jathar, S. B., Lee, J., & Kim, T. (2023). Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network. Sensors, 23(6), 3118. https://doi.org/10.3390/s23063118