Effects of Upper Limb Robot-Assisted Rehabilitation Compared with Conventional Therapy in Patients with Stroke: Preliminary Results on a Daily Task Assessed Using Motion Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Rehabilitation Intervention
2.3. Clinical Evaluation
2.4. Instrumental Evaluation
2.5. Data Analysis
2.6. Quantitative Indices
- The duration of the task, to assess efficiency;
- The length ratio, to assess accuracy;
- The time to peak, to assess planning;
- The max speed;
- The log-dimensionless Jerk (LDLJ) and the Spectral Arc Length (SPARC), to assess smoothness [30]
- The range of motion of the shoulder and elbow and the trunk displacement, to assess spatial posture.
2.7. Statistical Analysis
3. Results
3.1. Description of the Sample
3.2. Clinical Assessment
3.3. Instrumental Assessment
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jørgensen, H.S.; Nakayama, H.; Raaschou, H.; Vive-Larsen, J.; Støier, M.; Olsen, T.S. Outcome and Time Course of Recovery in Stroke. Part I: Outcome. The Copenhagen Stroke Study. Arch. Phys. Med. Rehabil. 1995, 76, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, E.S.; Coshall, C.; Dundas, R.; Stewart, J.; Rudd, A.G.; Howard, R.; Wolfe, C.D. Estimates of the Prevalence of Acute Stroke Impairments and Disability in a Multiethnic Population. Stroke 2001, 32, 1279–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broeks, J.G.; Lankhorst, G.J.; Rumping, K.; Prevo, A.J. The Long-Term Outcome of Arm Function after Stroke: Results of a Follow-up Study. Disabil. Rehabil. 1999, 21, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Sathian, K.; Buxbaum, L.J.; Cohen, L.G.; Krakauer, J.W.; Lang, C.E.; Corbetta, M.; Fitzpatrick, S.M. Neurological Principles and Rehabilitation of Action Disorders: Common Clinical Deficits. Neurorehabilit. Neural Repair 2011, 25, 21S–32S. [Google Scholar] [CrossRef] [Green Version]
- Lang, C.E.; Bland, M.D.; Bailey, R.R.; Schaefer, S.Y.; Birkenmeier, R.L. Assessment of Upper Extremity Impairment, Function, and Activity after Stroke: Foundations for Clinical Decision Making. J. Hand Ther. 2013, 26, 104–114, quiz 115. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zou, J.; Wan, Y.; Yao, Q.; Dong, P.; Li, G.; Wu, X.; Zhang, L.; Liang, D.; Zeng, Q.; et al. Rehabilitation of Motor Function after Stroke: A Bibliometric Analysis of Global Research from 2004 to 2022. Front. Aging Neurosci. 2022, 14, 1024163. [Google Scholar] [CrossRef]
- Gassert, R.; Dietz, V. Rehabilitation Robots for the Treatment of Sensorimotor Deficits: A Neurophysiological Perspective. J. Neuroeng. Rehabil. 2018, 15, 46. [Google Scholar] [CrossRef] [Green Version]
- Germanotta, M.; Cruciani, A.; Pecchioli, C.; Loreti, S.; Spedicato, A.; Meotti, M.; Mosca, R.; Speranza, G.; Cecchi, F.; Giannarelli, G.; et al. Reliability, Validity and Discriminant Ability of the Instrumental Indices Provided by a Novel Planar Robotic Device for Upper Limb Rehabilitation. J. Neuroeng. Rehabil. 2018, 15, 39. [Google Scholar] [CrossRef] [Green Version]
- Germanotta, M.; Gower, V.; Papadopoulou, D.; Cruciani, A.; Pecchioli, C.; Mosca, R.; Speranza, G.; Falsini, C.; Cecchi, F.; Vannetti, F.; et al. Reliability, Validity and Discriminant Ability of a Robotic Device for Finger Training in Patients with Subacute Stroke. J. Neuroeng. Rehabil. 2020, 17, 1. [Google Scholar] [CrossRef]
- Morone, G.; Palomba, A.; Martino Cinnera, A.; Agostini, M.; Aprile, I.; Arienti, C.; Paci, M.; Casanova, E.; Marino, D.; LA Rosa, G.; et al. Systematic Review of Guidelines to Identify Recommendations for Upper Limb Robotic Rehabilitation after Stroke. Eur. J. Phys. Rehabil. Med. 2021, 57, 238–245. [Google Scholar] [CrossRef]
- Veerbeek, J.M.; Langbroek-Amersfoort, A.C.; van Wegen, E.E.H.; Meskers, C.G.M.; Kwakkel, G. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke. Neurorehabilit. Neural Repair 2017, 31, 107–121. [Google Scholar] [CrossRef]
- Mehrholz, J.; Pohl, M.; Platz, T.; Kugler, J.; Elsner, B. Electromechanical and Robot-assisted Arm Training for Improving Activities of Daily Living, Arm Function, and Arm Muscle Strength after Stroke. Cochrane Database Syst. Rev. 2018, 2018, CD006876. [Google Scholar] [CrossRef]
- Straudi, S.; Baluardo, L.; Arienti, C.; Bozzolan, M.; Lazzarini, S.G.; Agostini, M.; Aprile, I.; Paci, M.; Casanova, E.; Marino, D.; et al. Effectiveness of Robot-Assisted Arm Therapy in Stroke Rehabilitation: An Overview of Systematic Reviews. NeuroRehabilitation 2022, 51, 559–576. [Google Scholar] [CrossRef]
- Rodgers, H.; Bosomworth, H.; Krebs, H.I.; van Wijck, F.; Howel, D.; Wilson, N.; Aird, L.; Alvarado, N.; Andole, S.; Cohen, D.L.; et al. Robot Assisted Training for the Upper Limb after Stroke (RATULS): A Multicentre Randomised Controlled Trial. Lancet 2019, 394, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Aprile, I.; Germanotta, M.; Cruciani, A.; Loreti, S.; Pecchioli, C.; Cecchi, F.; Montesano, A.; Galeri, S.; Diverio, M.; Falsini, C.; et al. Upper Limb Robotic Rehabilitation After Stroke: A Multicenter, Randomized Clinical Trial. J. Neurol. Phys. Ther. 2020, 44, 3–14. [Google Scholar] [CrossRef]
- Collins, K.C.; Kennedy, N.C.; Clark, A.; Pomeroy, V.M. Kinematic Components of the Reach-to-Target Movement After Stroke for Focused Rehabilitation Interventions: Systematic Review and Meta-Analysis. Front. Neurol. 2018, 9, 472. [Google Scholar] [CrossRef]
- Kwakkel, G.; van Wegen, E.E.H.; Burridge, J.H.; Winstein, C.J.; van Dokkum, L.E.H.; Alt Murphy, M.; Levin, M.F.; Krakauer, J.W.; ADVISORY group. Standardized Measurement of Quality of Upper Limb Movement After Stroke: Consensus-Based Core Recommendations from the Second Stroke Recovery and Rehabilitation Roundtable. Neurorehabilit. Neural Repair 2019, 33, 951–958. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, A.; Kanzler, C.M.; Lambercy, O.; Luft, A.R.; Veerbeek, J.M. Systematic Review on Kinematic Assessments of Upper Limb Movements After Stroke. Stroke 2019, 50, 718–727. [Google Scholar] [CrossRef]
- Villepinte, C.; Verma, A.; Dimeglio, C.; De Boissezon, X.; Gasq, D. Responsiveness of Kinematic and Clinical Measures of Upper-Limb Motor Function after Stroke: A Systematic Review and Meta-Analysis. Ann. Phys. Rehabil. Med. 2021, 64, 101366. [Google Scholar] [CrossRef]
- Alt Murphy, M.; Willén, C.; Sunnerhagen, K.S. Kinematic Variables Quantifying Upper-Extremity Performance after Stroke during Reaching and Drinking from a Glass. Neurorehabilit. Neural Repair 2011, 25, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Alt Murphy, M.; Willén, C.; Sunnerhagen, K.S. Responsiveness of Upper Extremity Kinematic Measures and Clinical Improvement during the First Three Months after Stroke. Neurorehabilit. Neural Repair 2013, 27, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Thrane, G.; Alt Murphy, M.; Sunnerhagen, K.S. Recovery of Kinematic Arm Function in Well-Performing People with Subacute Stroke: A Longitudinal Cohort Study. J. Neuroeng. Rehabil. 2018, 15, 67. [Google Scholar] [CrossRef] [PubMed]
- Thrane, G.; Sunnerhagen, K.S.; Murphy, M.A. Upper Limb Kinematics during the First Year after Stroke: The Stroke Arm Longitudinal Study at the University of Gothenburg (SALGOT). J. Neuroeng. Rehabil. 2020, 17, 76. [Google Scholar] [CrossRef] [PubMed]
- Aprile, I.; Rabuffetti, M.; Padua, L.; Di Sipio, E.; Simbolotti, C.; Ferrarin, M. Kinematic Analysis of the Upper Limb Motor Strategies in Stroke Patients as a Tool towards Advanced Neurorehabilitation Strategies: A Preliminary Study. Biomed. Res. Int. 2014, 2014, 636123. [Google Scholar] [CrossRef]
- Jakob, I.; Kollreider, A.; Germanotta, M.; Benetti, F.; Cruciani, A.; Padua, L.; Aprile, I. Robotic and Sensor Technology for Upper Limb Rehabilitation. PM R 2018, 10, S189–S197. [Google Scholar] [CrossRef] [Green Version]
- Aprile, I.; Cruciani, A.; Germanotta, M.; Gower, V.; Pecchioli, C.; Cattaneo, D.; Vannetti, F.; Padua, L.; Gramatica, F. Upper Limb Robotics in Rehabilitation: An Approach to Select the Devices, Based on Rehabilitation Aims, and Their Evaluation in a Feasibility Study. Appl. Sci. 2019, 9, 3920. [Google Scholar] [CrossRef] [Green Version]
- Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. The Post-Stroke Hemiplegic Patient. 1. A Method for Evaluation of Physical Performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar]
- Bohannon, R.W. Motricity Index Scores are Valid Indicators of Paretic Upper Extremity Strength Following Stroke. J. Phys. Ther. Sci. 1999, 11, 59–61. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.; Vanclay, F.; Cooper, B. Improving the Sensitivity of the Barthel Index for Stroke Rehabilitation. J. Clin. Epidemiol. 1989, 42, 703–709. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Melendez-Calderon, A.; Roby-Brami, A.; Burdet, E. On the Analysis of Movement Smoothness. J. Neuroeng. Rehabil. 2015, 12, 112. [Google Scholar] [CrossRef]
- Mehrholz, J.; Pollock, A.; Pohl, M.; Kugler, J.; Elsner, B. Systematic Review with Network Meta-Analysis of Randomized Controlled Trials of Robotic-Assisted Arm Training for Improving Activities of Daily Living and Upper Limb Function after Stroke. J. Neuroeng. Rehabil. 2020, 17, 83. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, C.; Fan, W.; Gu, M.; Yasin, G.; Xiao, S.; Huang, J.; Huang, X. Robot-Assisted Arm Training versus Therapist-Mediated Training after Stroke: A Systematic Review and Meta-Analysis. J. Healthc. Eng. 2020, 2020, 8810867. [Google Scholar] [CrossRef]
- Laparidou, D.; Curtis, F.; Akanuwe, J.; Goher, K.; Niroshan Siriwardena, A.; Kucukyilmaz, A. Patient, Carer, and Staff Perceptions of Robotics in Motor Rehabilitation: A Systematic Review and Qualitative Meta-Synthesis. J. Neuroeng. Rehabil. 2021, 18, 181. [Google Scholar] [CrossRef]
- Lo, K.; Stephenson, M.; Lockwood, C. The economic cost of robotic rehabilitation for adult stroke patients: A systematic review. JBI Database Syst. Rev. Implement Rep. 2019, 17, 520–547. [Google Scholar] [CrossRef]
- Lencioni, T.; Fornia, L.; Bowman, T.; Marzegan, A.; Caronni, A.; Turolla, A.; Jonsdottir, J.; Carpinella, I.; Ferrarin, M. A Randomized Controlled Trial on the Effects Induced by Robot-Assisted and Usual-Care Rehabilitation on Upper Limb Muscle Synergies in Post-Stroke Subjects. Sci. Rep. 2021, 11, 5323. [Google Scholar] [CrossRef]
- Lang, C.E.; Wagner, J.M.; Edwards, D.F.; Sahrmann, S.A.; Dromerick, A.W. Recovery of Grasp versus Reach in People with Hemiparesis Poststroke. Neurorehabil. Neural Repair 2006, 20, 444–454. [Google Scholar] [CrossRef]
- Saes, M.; Mohamed Refai, M.I.; van Beijnum, B.-J.F.; Bussmann, J.; Jansma, E.P.; Veltink, P.H.; Buurke, J.H.; van Wegen, E.E.; Meskers, C.G.; Krakauer, J. Quantifying Quality of Reaching Movements Longitudinally Post-Stroke: A Systematic Review. Neurorehabilit. Neural Repair 2022, 36, 183–207. [Google Scholar] [CrossRef]
- Frisoli, A.; Procopio, C.; Chisari, C.; Creatini, I.; Bonfiglio, L.; Bergamasco, M.; Rossi, B.; Carboncini, M.C. Positive Effects of Robotic Exoskeleton Training of Upper Limb Reaching Movements after Stroke. J. Neuroeng. Rehabil. 2012, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Palermo, E.; Hayes, D.R.; Russo, E.F.; Calabrò, R.S.; Pacilli, A.; Filoni, S. Translational Effects of Robot-Mediated Therapy in Subacute Stroke Patients: An Experimental Evaluation of Upper Limb Motor Recovery. PeerJ 2018, 6, e5544. [Google Scholar] [CrossRef]
- Rohrer, B.; Fasoli, S.; Krebs, H.I.; Hughes, R.; Volpe, B.; Frontera, W.R.; Stein, J.; Hogan, N. Movement Smoothness Changes during Stroke Recovery. J. Neurosci. 2002, 22, 8297–8304. [Google Scholar] [CrossRef]
- Schiefelbein, M.L.; Salazar, A.P.; Marchese, R.R.; Rech, K.D.; Schifino, G.P.; Figueiredo, C.S.; Cimolin, V.; Pagnussat, A.S. Upper-Limb Movement Smoothness after Stroke and Its Relationship with Measures of Body Function/Structure and Activity-A Cross-Sectional Study. J. Neurol. Sci. 2019, 401, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Saes, M.; Mohamed Refai, M.I.; van Kordelaar, J.; Scheltinga, B.L.; van Beijnum, B.-J.F.; Bussmann, J.B.J.; Buurke, J.H.; Veltink, P.H.; Meskers, C.G.M.; van Wegen, E.E.H.; et al. Smoothness Metric during Reach-to-Grasp after Stroke: Part 2. Longitudinal Association with Motor Impairment. J. Neuroeng. Rehabil. 2021, 18, 144. [Google Scholar] [CrossRef] [PubMed]
- Krebs, H.I.; Aisen, M.L.; Volpe, B.T.; Hogan, N. Quantization of Continuous Arm Movements in Humans with Brain Injury. Proc. Natl. Acad. Sci. USA 1999, 96, 4645–4649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dipietro, L.; Krebs, H.I.; Fasoli, S.E.; Volpe, B.T.; Hogan, N. Submovement Changes Characterize Generalization of Motor Recovery after Stroke. Cortex 2009, 45, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Dixon, P.C.; Stirling, L.; Xu, X.; Chang, C.C.; Dennerlein, J.T.; Schiffman, J.M. Aging May Negatively Impact Movement Smoothness during Stair Negotiation. Hum. Mov. Sci. 2018, 60, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Refai, M.I.; Saes, M.; Scheltinga, B.L.; van Kordelaar, J.; Bussmann, J.B.J.; Veltink, P.H.; Buurke, J.H.; Meskers, C.G.M.; van Wegen, E.E.H.; Kwakkel, G.; et al. Smoothness Metrics for Reaching Performance after Stroke. Part 1: Which One to Choose? J. Neuroeng. Rehabil. 2021, 18, 154. [Google Scholar] [CrossRef]
- Germanotta, M.; Iacovelli, C.; Aprile, I. Evaluation of Gait Smoothness in Patients with Stroke Undergoing Rehabilitation: Comparison between Two Metrics. Int. J. Environ. Res. Public Health 2022, 19, 13440. [Google Scholar] [CrossRef]
- Caronni, A.; Arcuri, P.; Carpinella, I.; Marzegan, A.; Lencioni, T.; Ramella, M.; Crippa, A.; Anastasi, D.; Rabuffetti, M.; Ferrarin, M.; et al. Smoothness of Movement in Idiopathic Cervical Dystonia. Sci. Rep. 2022, 12, 5090. [Google Scholar] [CrossRef]
- van Dokkum, L.; Hauret, I.; Mottet, D.; Froger, J.; Métrot, J.; Laffont, I. The Contribution of Kinematics in the Assessment of Upper Limb Motor Recovery Early after Stroke. Neurorehabilit. Neural Repair 2014, 28, 4–12. [Google Scholar] [CrossRef]
- Trombly, C.A.; Wu, C.Y. Effect of Rehabilitation Tasks on Organization of Movement after Stroke. Am. J. Occup. Ther. 1999, 53, 333–344. [Google Scholar] [CrossRef] [Green Version]
Index | Construct | Definition |
---|---|---|
Duration | Efficiency | Time required to perform the phase of the task (calculated between the onset and the offset) and expressed in seconds |
Length ratio | Accuracy | The ratio of the straight-line distance between the starting and final position of the hand and the distance traveled by the hand between the movement onset and offset |
Time to peak | Planning | The time elapsing between the movement onset and the maximum speed, expressed in seconds. |
Max speed | Speed | Peak speed of the hand during the movement, expressed in mm/s |
Log-dimensionless jerk (LDLJ) | Smoothness | where v(t) is the speed of the hand, t is the time, t1 and t2 are the onset and the offset of the movement, and vpeak is the peak speed of the hand |
Spectral arc length (SPARC) | Smoothness | where V(ω) is the Fourier amplitude spectrum of the speed v(t) of the hand, and is the normalized amplitude spectrum |
Shoulder ROM | Spatial posture | Range of motion of the shoulder joint in the sagittal plane (flexion/extension movement) |
Elbow ROM | Spatial posture | Range of motion of the elbow joint |
Trunk displacement | Spatial posture | Range of motion of the marker placed on the sternum during the phase in the sagittal plane, expressed in mm |
Parameter | Robotic Group (n = 9) | Conventional Group (n = 10) | p-Value |
---|---|---|---|
Age (years) | 64.9 (9.6) | 69.0 (13.8) | 0.315 |
Sex (male) | 8 (88.9%) | 7 (70.0%) | 0.313 |
Time since stroke (days) | 115.7 (58.4) | 105. (31.7) | 0.780 |
Fugl-Meyer Assessment for Upper Extremity | 41.8 (7.9) | 41.1 (7.5) | 0.661 |
Motricity Index for Upper Extremity | 61.1 (11.8) | 59.7 (15.1) | >0.999 |
Modified Barthel Index | 56.8 (22.4) | 51.8 (19.3) | 0.720 |
Parameter | Robotic Group (n = 9) | Conventional Group (n = 10) | p-Value |
---|---|---|---|
Changes in the Fugl-Meyer Assessment for Upper Extremity | 9.4 (5.4) | 10.4 (4.0) | 0.549 |
Changes in the Motricity Index for Upper Extremity | 11.1 (6.1) | 13.0 (8.2) | 0.604 |
Changes in the Modified Barthel Index | 19.3 (20.1) | 20.1 (15.5) | 0.604 |
Quantitative Index with Timepoint | Reaching | Drinking | Putting Back | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Robotic (Mean ± SD) | Conventional (Mean ± SD) | Time (p) | Group (p) | Time × Group (p) | Robotic (Mean ± SD) | Conventional (Mean ± SD) | Time (p) | Group (p) | Time × Group (p) | Robotic (Mean ± SD) | Conventional (Mean ± SD) | Time (p) | Group (p) | Time × Group (p) | ||
Duration (s) | T0 | 2.96 ± 0.65 | 3.31 ± 0.61 | 0.041 | 0.464 | 0.580 | 3.3 ± 0.58 | 3.59 ± 0.55 | 0.049 | 0.409 | 0.265 | 3.34 ± 0.63 | 4.06 ± 0.59 | 0.127 | 0.346 | 0.976 |
T1 | 2.19 ± 0.39 | 2.85 ± 0.37 | 2.32 ± 0.6 | 3.31 ± 0.57 | 2.78 ± 0.57 | 3.52 ± 0.54 | ||||||||||
Max speed (mm/s2) | T0 | 393.65 ± 49.35 | 423.34 ± 46.82 | 0.987 | 0.497 | 0.769 | 434.86 ± 55.24 | 434.01 ± 52.41 | 0.109 | 0.876 | 0.760 | 527.04 ± 71.45 | 567.11 ± 67.78 | 0.701 | 0.767 | 0.720 |
T1 | 385.74 ± 39.63 | 432.2 ± 37.59 | 484.19 ± 51.55 | 505.51 ± 48.91 | 562.13 ± 58.16 | 568.3 ± 55.17 | ||||||||||
Length ratio | T0 | 0.76 ± 0.05 | 0.79 ± 0.05 | 0.171 | 0.746 | 0.080 | 0.89 ± 0.03 | 0.87 ± 0.03 | 0.262 | 0.400 | 0.429 | 0.85 ± 0.04 | 0.82 ± 0.04 | 0.380 | 0.768 | 0.478 |
T1 | 0.85 ± 0.05 | 0.78 ± 0.05 | 0.94 ± 0.04 | 0.88 ± 0.04 | 0.85 ± 0.04 | 0.85 ± 0.04 | ||||||||||
Time to peak speed (s) | T0 | 0.74 ± 0.21 | 0.98 ± 0.2 | 0.439 | 0.258 | 0.424 | 1.23 ± 0.19 | 0.98 ± 0.18 | 0.095 | 0.658 | 0.126 | 0.94 ± 0.15 | 0.81 ± 0.15 | 0.875 | 0.648 | 0.066 |
T1 | 0.62 ± 0.17 | 0.98 ± 0.16 | 0.89 ± 0.14 | 0.96 ± 0.13 | 0.67 ± 0.25 | 1.04 ± 0.24 | ||||||||||
LDLJ | T0 | −2.43 ± 0.2 | −2.61 ± 0.19 | 0.011 | 0.337 | 0.530 | −2.37 ± 0.18 | −2.62 ± 0.17 | 0.005 | 0.290 | 0.929 | −2.48 ± 0.18 | −2.71 ± 0.17 | 0.213 | 0.460 | 0.575 |
T1 | −2.17 ± 0.15 | −2.45 ± 0.14 | −2.09 ± 0.18 | −2.35 ± 0.17 | −2.4 ± 0.19 | −2.53 ± 0.18 | ||||||||||
SPARC | T0 | −4.45 ± 0.46 | −4.49 ± 0.44 | 0.006 | 0.699 | 0.381 | −4.15 ± 0.3 | −4.4 ± 0.29 | 0.004 | 0.381 | 0.660 | −4.3 ± 0.3 | −4.44 ± 0.29 | 0.954 | 0.760 | 0.981 |
T1 | −3.78 ± 0.27 | −4.12 ± 0.26 | −3.66 ± 0.23 | −4.03 ± 0.21 | −4.31 ± 0.47 | −4.46 ± 0.45 | ||||||||||
Shoulder flex ROM (°) | T0 | 38.1 ± 4.0 | 47.1 ± 3.8 | 0.972 | 0.042 | 0.741 | 13.8 ± 2.8 | 14.5 ± 2.6 | 0.224 | 0.897 | 0.907 | 12.19 ± 2.56 | 14.37 ± 2.43 | 0.208 | 0.437 | 0.986 |
T1 | 39.1 ± 2.5 | 46.3 ± 2.4 | 17.1 ± 3.1 | 17.3 ± 2.9 | 14.7 ± 2.37 | 16.96 ± 2.24 | ||||||||||
Shoulder ab/add ROM (°) | T0 | 12.8 ± 1.9 | 12.306 ± 2.0 | 0.064 | 0.714 | 0.067 | 12.0 ± 2.6 | 11.3 ± 2.7 | 0.055 | 0.839 | 0.931 | 12.3 ± 2.8 | 11.0 ± 2.9 | 0.067 | 0.714 | 0.893 |
T1 | 9.9 ± 1.6 | 12.291 ± 1.7 | 9.4 ± 1.7 | 8.9 ± 1.7 | 9.7 ± 1.7 | 8.7 ± 1.8 | ||||||||||
Elbow Flex ROM (°) | T0 | 31.7 ± 4.1 | 39.69 ± 3.9 | 0.903 | 0.309 | 0.512 | 58.8 ± 5.1 | 60.9 ± 4.9 | 0.390 | 0.693 | 0.835 | 62.8 ± 4.8 | 63.0 ± 4.5 | 0.465 | 0.907 | 0.852 |
T1 | 34.3 ± 5.1 | 37.95 ± 4.9 | 60.7 ± 5.5 | 64 ± 5.2 | 64.6 ± 5.5 | 65.9 ± 5.2 | ||||||||||
Trunk displacement (mm) | T0 | 136.0 ± 19.7 | 152.1 ± 18.7 | 0.281 | 0.396 | 0.814 | 117.4 ± 17.4 | 134.4 ± 16.6 | 0.122 | 0.228 | 0.413 | 134.5 ± 18.5 | 157.5 ± 17.6 | 0.380 | 0.358 | 0.834 |
T1 | 146.9 ± 16.7 | 168.9 ± 15.9 | 129.9 ± 24.1 | 173.6 ± 22.8 | 152.9 ± 19.1 | 168.9 ± 18.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Germanotta, M.; Cortellini, L.; Insalaco, S.; Aprile, I. Effects of Upper Limb Robot-Assisted Rehabilitation Compared with Conventional Therapy in Patients with Stroke: Preliminary Results on a Daily Task Assessed Using Motion Analysis. Sensors 2023, 23, 3089. https://doi.org/10.3390/s23063089
Germanotta M, Cortellini L, Insalaco S, Aprile I. Effects of Upper Limb Robot-Assisted Rehabilitation Compared with Conventional Therapy in Patients with Stroke: Preliminary Results on a Daily Task Assessed Using Motion Analysis. Sensors. 2023; 23(6):3089. https://doi.org/10.3390/s23063089
Chicago/Turabian StyleGermanotta, Marco, Laura Cortellini, Sabina Insalaco, and Irene Aprile. 2023. "Effects of Upper Limb Robot-Assisted Rehabilitation Compared with Conventional Therapy in Patients with Stroke: Preliminary Results on a Daily Task Assessed Using Motion Analysis" Sensors 23, no. 6: 3089. https://doi.org/10.3390/s23063089
APA StyleGermanotta, M., Cortellini, L., Insalaco, S., & Aprile, I. (2023). Effects of Upper Limb Robot-Assisted Rehabilitation Compared with Conventional Therapy in Patients with Stroke: Preliminary Results on a Daily Task Assessed Using Motion Analysis. Sensors, 23(6), 3089. https://doi.org/10.3390/s23063089