The Effects of Directional and Non-Directional Stimuli during a Visuomotor Task and Their Correlation with Reaction Time: An ERP Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Task
2.3. Data Recordings and Pre-processing Analysis
2.4. ERP Processing Analysis
2.5. Statistical Analysis
3. Results
3.1. ERPs in Cue and Go Stimulus
3.2. Directional Stimuli (DS) and Non-Directional Stimuli (nDS)
3.3. Fast (F) and Slow (S) Groups in DS and nDS Conditions
3.4. Fast (F) and Slow (S) Trials
3.5. ERP Latencies
3.6. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hommel, B.; Pratt, J.; Colzato, L.; Godijn, R. Symbolic control of visual attention. Psychol. Sci. 2001, 12, 360–365. [Google Scholar] [CrossRef]
- Kincade, J.M.; Abrams, R.A.; Astafiev, S.V.; Shulman, G.L.; Corbetta, M. An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J. Neurosci. 2005, 25, 4593–4604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, R.M.; Fricker, Z.; Keehn, B. Activation of frontoparietal attention networks by non-predictive gaze and arrow cues. Soc. Cogn. Affect. Neurosci. 2015, 10, 294–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hietanen, J.K.; Nummenmaa, L.; Nyman, M.J.; Parkkola, R.; Hämäläinen, H. Automatic attention orienting by social and symbolic cues activates different neural networks: An fMRI study. Neuroimage 2006, 33, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Pascual-Leone, A.; Michel, C.M.; Farzan, F. Microstates in resting-state EEG: Current status and future directions. Neurosci. Biobehav. Rev. 2015, 49, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Rossini, P.M.; Di Iorio, R.; Bentivoglio, M.; Bertini, G.; Ferreri, F.; Gerloff, C.; Ilmoniemi, R.J.; Miraglia, F.; Nitsche, M.A.; Pestilli, F.; et al. Methods for analysis of brain connectivity: An IFCN-sponsored review. Clin. Neurophysiol. 2019, 130, 1833–1858. [Google Scholar] [CrossRef]
- Hajcak, G.; Klawohn, J.; Meyer, A. The Utility of Event-Related Potentials in Clinical Psychology. Annu. Rev. Clin. Psychol. 2019, 15, 71–95. [Google Scholar] [CrossRef] [Green Version]
- Michel, C.M.; He, B. EEG source localization. Handb. Clin. Neurol. 2019, 160, 85–101. [Google Scholar] [CrossRef]
- Kappenman, E.S.; Luck, S.J. Best Practices for Event-Related Potential Research in Clinical Populations. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2016, 1, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Koivisto, M.; Revonsuo, A. Event-related brain potential correlates of visual awareness. Neurosci. Biobehav. Rev. 2010, 34, 922–934. [Google Scholar] [CrossRef]
- Nelson, C.A.; McCleery, J.P. Use of event-related potentials in the study of typical and atypical development. J. Am. Acad. Child. Adolesc. Psychiatry 2008, 47, 1252–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauk, O.; Shtyrov, Y.; Pulvermüller, F. The time course of action and action-word comprehension in the human brain as revealed by neurophysiology. J. Physiol. Paris. 2008, 102, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kappenman, E.S.; Luck, S.J. Manipulation of orthogonal neural systems together in electrophysiological recordings: The MONSTER approach to simultaneous assessment of multiple neurocognitive dimensions. Schizophr. Bull. 2012, 38, 92–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talsma, D.; Slagter, H.A.; Nieuwenhuis, S.; Hage, J.; Kok, A. The orienting of visuospatial attention: An event-related brain potential study. Brain Res. Cogn. Brain Res. 2005, 25, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Theeuwes, J. Top-down and bottom-up control of visual selection. Acta Psychol. (Amst) 2010, 135, 77–99. [Google Scholar] [CrossRef]
- Duncan, C.C.; Barry, R.J.; Connolly, J.F.; Fischer, C.; Michie, P.T.; Näätänen, R.; Polich, J.; Reinvang, I.; Van Petten, C. Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin. Neurophysiol. 2009, 120, 1883–1908. [Google Scholar] [CrossRef]
- Heath, M.; Hassall, C.D.; MacLean, S.; Krigolson, O.E. Event-related brain potentials during the visuomotor mental rotation task: The contingent negative variation scales to angle of rotation. Neuroscience 2015, 311, 153–165. [Google Scholar] [CrossRef]
- Staines, W.R.; Padilla, M.; Knight, R.T. Frontal-parietal event-related potential changes associated with practising a novel visuomotor task. Brain Res. Cogn. Brain Res. 2002, 13, 195–202. [Google Scholar] [CrossRef]
- Hopf, J.M.; Mangun, G.R. Shifting visual attention in space: An electrophysiological analysis using high spatial resolution mapping. Clin. Neurophysiol. 2000, 111, 1241–1257. [Google Scholar] [CrossRef]
- Hietanen, J.K.; Leppänen, J.M.; Nummenmaa, L.; Astikainen, P. Visuospatial attention shifts by gaze and arrow cues: An ERP study. Brain Res. 2008, 1215, 123–136. [Google Scholar] [CrossRef]
- Wright, M.J.; Geffen, G.M.; Geffen, L.B. Event related potentials during covert orientation of visual attention: Effects of cue validity and directionality. Biol. Psychol. 1995, 41, 183–202. [Google Scholar] [CrossRef]
- Brignani, D.; Guzzon, D.; Marzi, C.A.; Miniussi, C. Attentional orienting induced by arrows and eye-gaze compared with an endogenous cue. Neuropsychologia 2009, 47, 370–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eimer, M.; Van Velzen, J. Crossmodal links in spatial attention are mediated by supramodal control processes: Evidence from event-related potentials. Psychophysiology 2002, 39, 437–449. [Google Scholar] [CrossRef]
- Harter, M.R.; Miller, S.L.; Price, N.J.; Lalonde, M.E.; Keyes, A.L. Neural processes involved in directing attention. J. Cogn. Neurosci. 1989, 1, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Macar, F.; Vidal, F. The CNV peak: An index of decision making and temporal memory. Psychophysiology 2003, 40, 950–954. [Google Scholar] [CrossRef]
- Ng, K.K.; Tobin, S.; Penney, T.B. Temporal accumulation and decision processes in the duration bisection task revealed by contingent negative variation. Front. Integr. Neurosci. 2011, 5, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantanus, H.; Ansseau, M.; Legros, J.J.; Timsit-Berthier, M. Relationship between dexamethasone suppression test and contingent negative variation in major depressive patients. Neurophysiol. Clin. 1988, 18, 345–353. [Google Scholar] [CrossRef]
- Mento, G. The passive CNV: Carving out the contribution of task-related processes to expectancy. Front. Hum. Neurosci. 2013, 7, 827. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, H.; Gevensleben, H.; Freisleder, F.J.; Moll, G.H.; Rothenberger, A. Training of slow cortical potentials in attention-deficit/hyperactivity disorder: Evidence for positive behavioral and neurophysiological effects. Biol. Psychiatry 2004, 55, 772–775. [Google Scholar] [CrossRef]
- Macar, F.; Vidal, F.; Casini, L. The supplementary motor area in motor and sensory timing: Evidence from slow brain potential changes. Exp. Brain Res. 1999, 125, 271–280. [Google Scholar] [CrossRef]
- Praamstra, P.; Kourtis, D.; Kwok, H.F.; Oostenveld, R. Neurophysiology of implicit timing in serial choice reaction-time performance. J. Neurosci. 2006, 26, 5448–5455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmaso, D.; Longoni, A.M. Problems in the assessment of hand preference. Cortex 1985, 21, 533–549. [Google Scholar] [CrossRef]
- Vecchio, F.; Nucci, L.; Pappalettera, C.; Miraglia, F.; Iacoviello, D.; Rossini, P.M. Time-frequency analysis of brain activity in response to Directional and non-Directional visual stimuli: An Event Related Spectral Perturbations (ERSP) study. J. Neural Eng. 2022. [Google Scholar] [CrossRef] [PubMed]
- Miraglia, F.; Vecchio, F.; Alù, F.; Orticoni, A.; Judica, E.; Cotelli, M.; Rossini, P.M. Brain sources’ activity in resting state before a visuo-motor task. J. Neural Eng. 2021. [Google Scholar] [CrossRef]
- Vecchio, F.; Miraglia, F.; Alù, F.; Menna, M.; Judica, E.; Cotelli, M.; Rossini, P.M. Classification of Alzheimer’s Disease with Respect to Physiological Aging with Innovative EEG Biomarkers in a Machine Learning Implementation. J. Alzheimers Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Miraglia, F.; Vecchio, F.; Rossini, P.M. Searching for signs of aging and dementia in EEG through network analysis. Behav. Brain Res. 2017, 317, 292–300. [Google Scholar] [CrossRef]
- Miraglia, F.; Vecchio, F.; Marra, C.; Quaranta, D.; Alù, F.; Peroni, B.; Granata, G.; Judica, E.; Cotelli, M.; Rossini, P.M. Small World Index in Default Mode Network Predicts Progression from Mild Cognitive Impairment to Dementia. Int. J. Neural Syst. 2020, 30, 2050004. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, F.; Tomino, C.; Miraglia, F.; Iodice, F.; Erra, C.; Di Iorio, R.; Judica, E.; Alù, F.; Fini, M.; Rossini, P.M. Cortical connectivity from EEG data in acute stroke: A study via graph theory as a potential biomarker for functional recovery. Int. J. Psychophysiol. 2019, 146, 133–138. [Google Scholar] [CrossRef]
- Vecchio, F.; Miraglia, F.; Quaranta, D.; Lacidogna, G.; Marra, C.; Rossini, P.M. Learning Processes and Brain Connectivity in A Cognitive-Motor Task in Neurodegeneration: Evidence from EEG Network Analysis. J. Alzheimers Dis. 2018, 66, 471–481. [Google Scholar] [CrossRef]
- Hoffmann, S.; Falkenstein, M. The correction of eye blink artefacts in the EEG: A comparison of two prominent methods. PLoS ONE 2008, 3, e3004. [Google Scholar] [CrossRef]
- Jung, T.P.; Makeig, S.; Humphries, C.; Lee, T.W.; McKeown, M.J.; Iragui, V.; Sejnowski, T.J. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000, 37, 163–178. [Google Scholar] [CrossRef]
- Tipples, J.; Johnston, P.; Mayes, A. Electrophysiological responses to violations of expectation from eye gaze and arrow cues. Soc. Cogn. Affect. Neurosci. 2013, 8, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Campanella, S.; Quinet, P.; Bruyer, R.; Crommelinck, M.; Guerit, J.M. Categorical perception of happiness and fear facial expressions: An ERP study. J. Cogn. Neurosci. 2002, 14, 210–227. [Google Scholar] [CrossRef]
- Fjell, A.M.; Walhovd, K.B.; Fischl, B.; Reinvang, I. Cognitive function, P3a/P3b brain potentials, and cortical thickness in aging. Hum. Brain Mapp. 2007, 28, 1098–1116. [Google Scholar] [CrossRef] [Green Version]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Chen, G.; Zhong, X.; Yu, G.; Mo, H.; Jiang, J.; Chen, X.; Zhao, F.; Zheng, Y. Influence of Audiovisual Training on Horizontal Sound Localization and Its Related ERP Response. Front. Hum. Neurosci. 2018, 12, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conte, S.; Richards, J.E.; Guy, M.W.; Xie, W.; Roberts, J.E. Face-sensitive brain responses in the first year of life. NeuroImage 2020, 211, 116602. [Google Scholar] [CrossRef] [PubMed]
- Jongen, E.M.; Smulders, F.T.; Van der Heiden, J.S. Lateralized ERP components related to spatial orienting: Discriminating the direction of attention from processing sensory aspects of the cue. Psychophysiology 2007, 44, 968–986. [Google Scholar] [CrossRef]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Mussini, E.; Berchicci, M.; Bianco, V.; Perri, R.L.; Quinzi, F.; Di Russo, F. The Role of Task Complexity on Frontal Event-related Potentials and Evidence in Favour of the Epiphenomenal Interpretation of the Go/No-Go N2 Effect. Neuroscience 2020, 449, 1–8. [Google Scholar] [CrossRef]
- Baumeister, J.; Barthel, T.; Geiss, K.R.; Weiss, M. Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress. Nutr. Neurosci. 2008, 11, 103–110. [Google Scholar] [CrossRef]
- Baumeister, S.; Hohmann, S.; Wolf, I.; Plichta, M.M.; Rechtsteiner, S.; Zangl, M.; Ruf, M.; Holz, N.; Boecker, R.; Meyer-Lindenberg, A.; et al. Sequential inhibitory control processes assessed through simultaneous EEG-fMRI. Neuroimage 2014, 94, 349–359. [Google Scholar] [CrossRef]
- Perri, R.L.; Spinelli, D.; Di Russo, F. Missing the Target: The Neural Processing Underlying the Omission Error. Brain Topogr. 2017, 30, 352–363. [Google Scholar] [CrossRef]
- Perri, R.L.; Berchicci, M.; Bianco, V.; Quinzi, F.; Spinelli, D.; Di Russo, F. Perceptual load in decision making: The role of anterior insula and visual areas. An ERP study. Neuropsychologia 2019, 129, 65–71. [Google Scholar] [CrossRef]
- Vuillier, L.; Bryce, D.; Szücs, D.; Whitebread, D. The Maturation of Interference Suppression and Response Inhibition: ERP Analysis of a Cued Go/Nogo Task. PLoS ONE 2016, 11, e0165697. [Google Scholar] [CrossRef] [Green Version]
- Di Russo, F.; Lucci, G.; Sulpizio, V.; Berchicci, M.; Spinelli, D.; Pitzalis, S.; Galati, G. Spatiotemporal brain mapping during preparation, perception, and action. Neuroimage 2016, 126, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Verleger, R.; Paehge, T.; Kolev, V.; Yordanova, J.; Jaśkowski, P. On the relation of movement-related potentials to the go/no-go effect on P3. Biol. Psychol. 2006, 73, 298–313. [Google Scholar] [CrossRef] [PubMed]
- Eddy, M.; Schmid, A.; Holcomb, P.J. Masked repetition priming and event-related brain potentials: A new approach for tracking the time-course of object perception. Psychophysiology 2006, 43, 564–568. [Google Scholar] [CrossRef] [Green Version]
- Shors, T.J.; Ary, J.P.; Eriksen, K.J.; Wright, K.W. P100 amplitude variability of the pattern visual evoked potential. Electroencephalogr. Clin. Neurophysiol. 1986, 65, 316–319. [Google Scholar] [CrossRef]
- Sokol, S. Visually evoked potentials: Theory, techniques and clinical applications. Surv. Ophthalmol. 1976, 21, 18–44. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.L.; Gordon, E.; Rennie, C.; Wright, J.J.; Bahramali, H.; Li, W.M.; Clouston, P.; Morris, J.G. Dynamics of SCR, EEG, and ERP activity in an oddball paradigm with short interstimulus intervals. Psychophysiology 1999, 36, 543–551. [Google Scholar] [CrossRef]
- Downes, M.; Bathelt, J.; De Haan, M. Event-related potential measures of executive functioning from preschool to adolescence. Dev. Med. Child. Neurol. 2017, 59, 581–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinvang, I.; Magnussen, S.; Greenlee, M.W. Hemispheric asymmetry in visual discrimination and memory: ERP evidence for the spatial frequency hypothesis. Exp. Brain Res. 2002, 144, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Zhang, M.; Zhang, H.; Li, X.; Zou, F.; Wang, Y.; Wu, X. The spontaneous activity and functional network of the occipital cortex is correlated with state anxiety in healthy adults. Neurosci. Lett. 2020, 715, 134596. [Google Scholar] [CrossRef]
- Jin, J.; Chen, Z.; Xu, R.; Miao, Y.; Wang, X.; Jung, T.P. Developing a Novel Tactile P300 Brain-Computer Interface with a Cheeks-Stim Paradigm. IEEE Trans. Biomed. Eng. 2020, 67, 2585–2593. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yin, E.; Liu, Y.; Jiang, J.; Hu, D. A novel task-oriented optimal design for P300-based brain-computer interfaces. J. Neural Eng. 2014, 11, 056003. [Google Scholar] [CrossRef]
- Coch, D.; Mitra, P.; George, E. Behavioral and ERP evidence of word and pseudoword superiority effects in 7- and 11-year-olds. Brain Res. 2012, 1486, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Jurys, M.; Sirek, S.; Kolonko, A.; Pojda-Wilczek, D. Visual evoked potentials in diagnostics of optic neuropathy associated with renal failure. Postepy Hig. Med. Dosw. (Online) 2017, 71, 32–39. [Google Scholar] [CrossRef]
- Bahramali, H.; Gordon, E.; Li, W.M.; Rennie, C.; Wright, J. Fast and slow reaction time changes reflected in ERP brain function. Int. J. Neurosci. 1998, 93, 75–85. [Google Scholar] [CrossRef]
- Marotta, A.; Lupiáñez, J.; Román-Caballero, R.; Narganes-Pineda, C.; Martín-Arévalo, E. Are eyes special? Electrophysiological and behavioural evidence for a dissociation between eye-gaze and arrows attentional mechanisms. Neuropsychologia 2019, 129, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Shackman, A.J.; Maxwell, J.S.; McMenamin, B.W.; Greischar, L.L.; Davidson, R.J. Stress potentiates early and attenuates late stages of visual processing. J. Neurosci. 2011, 31, 1156–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kok, A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 2001, 38, 557–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polich, J. Task difficulty, probability, and inter-stimulus interval as determinants of P300 from auditory stimuli. Electroencephalogr. Clin. Neurophysiol. 1987, 68, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Han, S.H.; Jeong, H.B.; Park, K.Y.; Shin, H.W.; Youn, Y.C.; Kim, S. P300 latency changes in patients with mild cognitive impairment after taking choline alphoscerate; A preliminary study. eNeurologicalSci 2018, 11, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Magliero, A.; Bashore, T.R.; Coles, M.G.; Donchin, E. On the dependence of P300 latency on stimulus evaluation processes. Psychophysiology 1984, 21, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, L.; Holly, M.; Slade, T.; Hayward, M.; Barrett, G.; Blumhardt, L.D. Wave form variations in auditory event-related potentials evoked by a memory-scanning task and their relationship with tests of intellectual function. Electroencephalogr. Clin. Neurophysiol. 1992, 84, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; She, S.; Luo, L.; Li, H.; Ning, Y.; Ren, J.; Wu, Z.; Huang, R.; Zheng, Y. Abnormal Contingent Negative Variation Drifts During Facial Expression Judgment in Schizophrenia Patients. Front. Hum. Neurosci. 2020, 14, 274. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, S.; Santens, P.; Cosyns, M.; van Mierlo, P.; Batens, K.; Corthals, P.; De Letter, M.; Van Borsel, J. Increased motor preparation activity during fluent single word production in DS: A correlate for stuttering frequency and severity. Neuropsychologia 2015, 75, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Benau, E.M.; DeLoretta, L.C.; Moelter, S.T. The time is “right:” Electrophysiology reveals right parietal electrode dominance in time perception. Brain Cogn. 2018, 123, 92–102. [Google Scholar] [CrossRef] [PubMed]
CUE | GO | CUE | GO | ||||||
---|---|---|---|---|---|---|---|---|---|
N200 | P300 | N200 | P300 | N200 | P300 | N200 | P300 | ||
Fp1 | - | - | - | - | C1 | - | - | - | - |
Fp2 | - | - | - | - | C2 | - | 0.0034 | 0.0071 | 0.0034 |
F3 | 0.0217 | - | - | - | P1 | 0.0183 | - | 0.0243 | - |
F4 | - | - | - | - | P2 | - | 0.0124 | 0.0102 | 0.0124 |
C3 | 0.0038 | - | - | - | AF3 | - | 0.0203 | - | 0.0203 |
C4 | - | 0.0014 | 0.0358 | 0.0014 | AF4 | - | 0.0346 | - | 0.0346 |
P3 | 0.0045 | - | - | - | FC3 | 0.0230 | 0.0429 | - | - |
P4 | 0.0154 | 0.0092 | 0.0389 | 0.0092 | FC4 | - | 0.0019 | 0.0017 | 0.0019 |
O1 | 0.0002 | - | - | - | CP3 | 0.0068 | - | - | - |
O2 | 0.0019 | - | - | - | CP4 | - | 0.0018 | 0.0242 | 0.0018 |
F7 | 0.0043 | - | - | - | PO3 | 0.0024 | - | 0.0406 | - |
F8 | 0.0327 | - | - | - | PO4 | 0.0071 | 0.0487 | 0.0355 | - |
T7 | 0.0019 | 0.0475 | - | - | F5 | 0.0191 | - | - | - |
T8 | 0.0109 | - | - | - | F6 | - | - | - | - |
P7 | 0.0002 | - | - | - | C5 | 0.0022 | 0.0346 | - | 0.0346 |
P8 | 0.0015 | - | - | - | C6 | - | - | 0.0266 | - |
Fz | - | - | - | - | P5 | 0.0011 | - | - | - |
Cz | - | - | 0.0396 | - | P6 | 0.0049 | 0.0235 | 0.0235 | |
Pz | - | - | 0.0104 | - | AF7 | - | - | - | - |
FC1 | 0.0401 | 0.0381 | - | 0.0381 | AF8 | - | - | - | - |
FC2 | - | 0.0042 | 0.0016 | 0.0042 | FT7 | 0.0056 | 0.0333 | - | 0.0333 |
CP1 | 0.0348 | - | 0.0396 | - | FT8 | 0.0361 | - | - | - |
CP2 | - | 0.0098 | 0.0368 | 0.0098 | TP7 | 0.0014 | - | - | - |
FC5 | 0.0056 | 0.0235 | - | 0.0235 | TP8 | 0.0037 | - | - | - |
FC6 | - | - | - | - | PO7 | 0.0002 | - | - | - |
CP5 | 0.0015 | - | - | - | PO8 | 0.0016 | - | - | - |
CP6 | 0.0096 | 0.0385 | 0.0395 | 0.0385 | Fpz | - | - | - | - |
TP9 | 0.0001 | 0.0104 | - | 0.0104 | CPz | - | - | 0.0384 | - |
TP10 | 0.0028 | - | - | - | POz | 0.0070 | - | 0.0127 | - |
F1 | - | 0.0155 | - | 0.0155 | Oz | 0.0011 | - | - | - |
F2 | - | - | - | - |
DS | DS | ||||||||
---|---|---|---|---|---|---|---|---|---|
P100 | P150 | N200 | P300 | P100 | P150 | N200 | P300 | ||
Fp1 | 0.0231 | - | - | - | C1 | - | - | - | - |
Fp2 | 0.0227 | - | - | 0.0382 | C2 | - | - | - | - |
F3 | 0.0171 | - | - | - | P1 | - | - | - | - |
F4 | 0.0437 | - | 0.0057 | 0.0274 | P2 | - | - | - | - |
C3 | 0.0028 | 0.0229 | - | - | AF3 | 0.0295 | - | - | - |
C4 | - | - | - | - | AF4 | 0.0283 | - | 0.0274 | 0.0186 |
P3 | - | - | - | - | FC3 | 0.0052 | 0.0037 | - | - |
P4 | - | - | - | - | FC4 | - | - | 0.0075 | 0.0414 |
O1 | 0.0046 | - | - | 0.0178 | CP3 | 0.0206 | - | - | - |
O2 | - | - | - | 0.0218 | CP4 | - | - | - | - |
F7 | 0.0023 | 0.0290 | 0.0422 | 0.0289 | PO3 | - | - | - | - |
F8 | 0.0281 | - | 0.0025 | 0.0043 | PO4 | - | - | - | - |
T7 | 0.0001 | 0.0108 | - | 0.0048 | F5 | 0.0033 | 0.0436 | - | - |
T8 | - | - | 0.0420 | 0.0016 | F6 | 0.0398 | - | 0.0015 | 0.0092 |
P7 | 0.0009 | 0.0127 | - | 0.0112 | C5 | 0.0007 | 0.0429 | - | 0.0441 |
P8 | - | - | - | 0.0078 | C6 | - | - | 0.0253 | 0.0120 |
Fz | - | - | 0.0348 | - | P5 | 0.0176 | - | - | 0.0304 |
Cz | - | - | - | - | P6 | - | - | - | - |
Pz | - | - | - | - | AF7 | 0.0054 | - | - | - |
FC1 | - | 0.0474 | - | - | AF8 | 0.0177 | - | 0.0080 | 0.0254 |
FC2 | - | - | 0.0400 | - | FT7 | 0.0017 | 0.0340 | 0.0246 | |
CP1 | - | - | - | - | FT8 | - | - | 0.0038 | 0.0028 |
CP2 | - | - | - | - | TP7 | 0.0001 | 0.0012 | - | 0.0023 |
FC5 | 0.0010 | 0.0088 | - | 0.0317 | TP8 | - | - | - | 0.0035 |
FC6 | - | - | 0.0016 | 0.0035 | PO7 | 0.0021 | 0.0258 | - | 0.0137 |
CP5 | 0.0020 | 0.0264 | - | 0.0158 | PO8 | - | - | - | 0.0211 |
CP6 | - | - | - | 0.0346 | Fpz | 0.0225 | - | - | - |
TP9 | 0.0000 | 0.0017 | - | 0.0007 | CPz | - | - | - | - |
TP10 | 0.0147 | 0.0031 | - | 0.0019 | POz | - | - | - | - |
F1 | 0.0373 | - | - | - | Oz | 0.0235 | - | - | 0.0346 |
F2 | - | - | 0.0188 | 0.0385 |
nDS | nDS | ||||||||
---|---|---|---|---|---|---|---|---|---|
P100 | P150 | N200 | P300 | P100 | P150 | N200 | P300 | ||
Fp1 | - | - | - | - | C1 | 0.0487 | - | - | - |
Fp2 | - | - | - | - | C2 | - | - | - | - |
F3 | - | - | - | - | P1 | 0.0134 | - | - | - |
F4 | 0.0350 | - | 0.0024 | - | P2 | 0.0200 | - | - | - |
C3 | 0.0437 | - | - | - | AF3 | - | - | - | - |
C4 | - | - | - | - | AF4 | - | - | - | - |
P3 | 0.0156 | - | - | - | FC3 | - | 0.0432 | - | - |
P4 | 0.0118 | - | - | - | FC4 | 0.0149 | - | 0.0037 | - |
O1 | 0.0027 | - | - | - | CP3 | 0.0139 | - | - | - |
O2 | 0.0182 | - | - | - | CP4 | 0.0377 | - | - | - |
F7 | - | - | - | - | PO3 | 0.0099 | - | - | - |
F8 | 0.0150 | - | 0.0219 | 0.0198 | PO4 | 0.0216 | - | - | - |
T7 | 0.0069 | 0.0083 | - | 0.0331 | F5 | - | 0.0488 | - | - |
T8 | 0.0032 | - | 0.0195 | 0.0289 | F6 | 0.0193 | - | 0.0051 | 0.0337 |
P7 | 0.0011 | 0.0214 | - | 0.0471 | C5 | 0.0343 | - | - | - |
P8 | 0.0052 | - | - | - | C6 | 0.0107 | - | 0.0158 | - |
Fz | 0.0350 | - | 0.0232 | - | P5 | 0.0066 | - | - | - |
Cz | - | - | - | - | P6 | 0.0177 | - | - | - |
Pz | 0.0212 | - | - | - | AF7 | - | - | - | - |
FC1 | - | 0.0439 | - | - | AF8 | 0.0342 | - | 0.0353 | - |
FC2 | - | - | - | - | FT7 | - | - | - | - |
CP1 | - | - | - | - | FT8 | 0.0042 | - | 0.0035 | 0.0235 |
CP2 | - | - | - | - | TP7 | 0.0015 | 0.0039 | - | 0.0240 |
FC5 | 0.0347 | 0.0294 | - | - | TP8 | 0.0052 | - | - | 0.0439 |
FC6 | 0.0063 | - | 0.0095 | 0.0494 | PO7 | 0.0007 | 0.0232 | - | 0.0466 |
CP5 | 0.0025 | 0.0213 | - | - | PO8 | 0.0119 | - | - | - |
CP6 | 0.0157 | - | - | - | Fpz | - | - | - | - |
TP9 | 0.0016 | 0.0019 | - | 0.0096 | CPz | - | - | - | - |
TP10 | 0.0044 | 0.0375 | - | 0.0185 | POz | 0.0191 | - | - | - |
F1 | - | - | - | - | Oz | 0.0072 | - | - | - |
F2 | 0.0095 | - | 0.0047 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miraglia, F.; Pappalettera, C.; Di Ienno, S.; Nucci, L.; Cacciotti, A.; Manenti, R.; Judica, E.; Rossini, P.M.; Vecchio, F. The Effects of Directional and Non-Directional Stimuli during a Visuomotor Task and Their Correlation with Reaction Time: An ERP Study. Sensors 2023, 23, 3143. https://doi.org/10.3390/s23063143
Miraglia F, Pappalettera C, Di Ienno S, Nucci L, Cacciotti A, Manenti R, Judica E, Rossini PM, Vecchio F. The Effects of Directional and Non-Directional Stimuli during a Visuomotor Task and Their Correlation with Reaction Time: An ERP Study. Sensors. 2023; 23(6):3143. https://doi.org/10.3390/s23063143
Chicago/Turabian StyleMiraglia, Francesca, Chiara Pappalettera, Sara Di Ienno, Lorenzo Nucci, Alessia Cacciotti, Rosa Manenti, Elda Judica, Paolo Maria Rossini, and Fabrizio Vecchio. 2023. "The Effects of Directional and Non-Directional Stimuli during a Visuomotor Task and Their Correlation with Reaction Time: An ERP Study" Sensors 23, no. 6: 3143. https://doi.org/10.3390/s23063143
APA StyleMiraglia, F., Pappalettera, C., Di Ienno, S., Nucci, L., Cacciotti, A., Manenti, R., Judica, E., Rossini, P. M., & Vecchio, F. (2023). The Effects of Directional and Non-Directional Stimuli during a Visuomotor Task and Their Correlation with Reaction Time: An ERP Study. Sensors, 23(6), 3143. https://doi.org/10.3390/s23063143