Vibro-Acoustic Sensing of Instrument Interactions as a Potential Source of Texture-Related Information in Robotic Palpation
Abstract
:1. Introduction
1.1. Haptic Sensing in Robot-Assisted Surgery
1.2. Vibro-Acoustic Sensing of Instrument Interactions
2. Materials and Methods
2.1. Experimental Setup
2.2. Data Acquisition
2.3. Signal Analysis
2.4. Feature Extraction
2.5. Classification
3. Results
3.1. Qualitative Results
3.2. Quantitative Results
4. Discussion
4.1. Classification
4.2. Experimental Setup
4.3. Influence of Contact Angle and Palpation Velocity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MIS | minimally invasive surgery |
RMIS | robot-assisted minimally invasive surgery |
FCI | Franka control interface |
ROS | robot operating system |
CWT | continuous wavelet transform |
DWT | discrete wavelet transform |
SVM | linear support vector machine |
kNN | k-nearest neighbours |
VLF | very low-frequency sub-band |
LF | low-frequency sub-band |
MF | middle-frequency sub-band |
HF | high-frequency sub-band |
DF | dominant frequency |
IDF | instantaneous dominant frequency |
frequency of maximal excitation | |
total energy of the spectrum | |
spectral energy of sub-band | |
IDF’s histogram energy of sub-band | |
material 1–3 | |
D1, D2 | Dataset 1, Dataset 2 |
contact angle | |
palpation velocity |
References
- Okamura, A.M. Haptic feedback in robot-assisted minimally invasive surgery. Curr. Opin. Urol. 2009, 19, 102. [Google Scholar] [CrossRef] [PubMed]
- Alleblas, C.C.; Vleugels, M.P.; Coppus, S.F.; Nieboer, T.E. The effects of laparoscopic graspers with enhanced haptic feedback on applied forces: A randomized comparison with conventional graspers. Surg. Endosc. 2017, 31, 5411–5417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemzadeh, H.; Raman, J.; Leveson, N.; Kalbarczyk, Z.; Iyer, R.K. Adverse Events in Robotic Surgery: A Retrospective Study of 14 Years of FDA Data. PLoS ONE 2016, 11, e0151470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerfolio, R.J.; Bess, K.M.; Wei, B.; Minnich, D.J. Incidence, Results, and Our Current Intraoperative Technique to Control Major Vascular Injuries During Minimally Invasive Robotic Thoracic Surgery. Ann. Thorac. Surg. 2016, 102, 394–399. [Google Scholar] [CrossRef] [Green Version]
- Tare, D.; Maria, P.; Ghavamian, R. Vascular Complications in Laparoscopic and Robotic Urologic Surgery. In Complications of Laparoscopic and Robotic Urologic Surgery; Ghavamian, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 45–58. [Google Scholar]
- Okamura, A.M. Methods for haptic feedback in teleoperated robot-assisted surgery. Ind. Robot. 2004, 31, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Van Beurden, M.H.; IJsselsteijn, W.A.; Juola, J.F. Effectiveness of stereoscopic displays in medicine: A review. 3D Res. 2012, 3, 1–13. [Google Scholar] [CrossRef]
- Sørensen, S.M.D.; Savran, M.M.; Konge, L.; Bjerrum, F. Three-dimensional versus two-dimensional vision in laparoscopy: A systematic review. Surg. Endosc. 2016, 30, 11–23. [Google Scholar] [CrossRef]
- Bandari, N.; Dargahi, J.; Packirisamy, M. Tactile Sensors for Minimally Invasive Surgery: A Review of the State-of-the-Art, Applications, and Perspectives. IEEE Access 2020, 8, 7682–7708. [Google Scholar] [CrossRef]
- Konstantinova, J.; Jiang, A.; Althoefer, K.; Dasgupta, P.; Nanayakkara, T. Implementation of Tactile Sensing for Palpation in Robot-Assisted Minimally Invasive Surgery: A Review. IEEE Sens. J. 2014, 14, 2490–2501. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Bok, B.G.; Ahn, J.H.; Kim, M.S. Recent Advances in Tactile Sensing Technology. Micromachines 2018, 9, 321. [Google Scholar] [CrossRef] [Green Version]
- Enayati, N.; De Momi, E.; Ferrigno, G. Haptics in Robot-Assisted Surgery: Challenges and Benefits. IEEE Rev. Biomed. Eng. 2016, 9, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Herzig, N.; Maiolino, P.; Iida, F.; Nanayakkara, T. A variable stiffness robotic probe for soft tissue palpation. IEEE Robot. Autom. Lett. 2018, 3, 1168–1175. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Liu, H.; Seneviratne, L.D.; Althoefer, K. An optical tactile array probe head for tissue palpation during minimally invasive surgery. IEEE Sens. J. 2014, 14, 3283–3291. [Google Scholar] [CrossRef] [Green Version]
- Scimeca, L.; Maiolino, P.; Bray, E.; Iida, F. Structuring of tactile sensory information for category formation in robotics palpation. Auton. Robot. 2020, 44, 1377–1393. [Google Scholar] [CrossRef]
- Kim, U.; Kim, Y.B.; Seok, D.Y.; So, J.; Choi, H.R. A surgical palpation probe with 6-axis force/torque sensing capability for minimally invasive surgery. IEEE Trans. Ind. Electron. 2017, 65, 2755–2765. [Google Scholar] [CrossRef]
- Ju, F.; Wang, Y.; Zhang, Z.; Wang, Y.; Yun, Y.; Guo, H.; Chen, B. A miniature piezoelectric spiral tactile sensor for tissue hardness palpation with catheter robot in minimally invasive surgery. Smart Mater. Struct. 2019, 28, 025033. [Google Scholar] [CrossRef]
- Lv, C.; Wang, S.; Shi, C. A high-precision and miniature fiber bragg grating-based force sensor for tissue palpation during minimally invasive surgery. Ann. Biomed. Eng. 2020, 48, 669–681. [Google Scholar] [CrossRef]
- Pacchierotti, C.; Prattichizzo, D.; Kuchenbecker, K.J. Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery. IEEE Trans. Biomed. Eng. 2016, 63, 278–287. [Google Scholar] [CrossRef]
- Othman, W.; Qasaimeh, M.A. Tactile Sensing for Minimally Invasive Surgery: Conventional Methods and Potential Emerging Tactile Technologies. Front. Robot. AI 2021, 8, 376. [Google Scholar] [CrossRef]
- Dalvand, M.M.; Nahavandi, S.; Fielding, M.; Mullins, J.; Najdovski, Z.; Howe, R.D. Modular instrument for a haptically-enabled robotic surgical system (herosurg). IEEE Access 2018, 6, 31974–31982. [Google Scholar] [CrossRef]
- Bholat, O.S.; Haluck, R.S.; Kutz, R.H.; Gorman, P.J.; Krummel, T.M. Defining the role of haptic feedback in minimally invasive surgery. Stud. Health Technol. Inform. 1999, 62, 62–66. [Google Scholar] [PubMed]
- Bholat, O.S.; Haluck, R.S.; Murray, W.B.; Gorman, P.J.; Krummel, T.M. Tactile feedback is present during minimally invasive surgery. J. Am. Coll. Surg. 1999, 189, 349–355. [Google Scholar] [CrossRef]
- Westebring-van der Putten, E.P.; Goossens, R.H.; Jakimowicz, J.J.; Dankelman, J. Haptics in minimally invasive surgery—A review. Minim. Invasive Ther. Allied Technol. 2008, 17, 3–16. [Google Scholar] [CrossRef]
- Zimmerman, A.; Bai, L.; Ginty, D.D. The gentle touch receptors of mammalian skin. Science 2014, 346, 950–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Illanes, A.; Boese, A.; Maldonado, I.; Pashazadeh, A.; Schaufler, A.; Navab, N.; Friebe, M. Novel clinical device tracking and tissue event characterization using proximally placed audio signal acquisition and processing. Sci. Rep. 2018, 8, 12070. [Google Scholar] [CrossRef] [PubMed]
- Illanes, A.; Sühn, T.; Esmaeili, N.; Maldonado, I.; Schaufler, A.; Chen, C.H.; Boese, A.; Friebe, M. Surgical Audio Guidance SurAG: Extracting non-invasively meaningful guidance information during minimally invasive procedures. In Proceedings of the 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), Athens, Greece, 28–30 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 567–570. [Google Scholar]
- Illanes, A.; Boese, A.; Friebe, M.; Hansen, C. Feasibility Check: Can Audio Be a Simple Alternative to Force-Based Feedback for Needle Guidance? In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 18–22 September 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 24–33. [Google Scholar]
- Sabieleish, M.; Heryan, K.; Boese, A.; Hansen, C.; Friebe, M.; Illanes, A. Study of needle punctures into soft tissue through audio and force sensing: Can audio be a simple alternative for needle guidance? Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1683–1697. [Google Scholar] [CrossRef]
- Schaufler, A.; Sühn, T.; Esmaeili, N.; Boese, A.; Wex, C.; Croner, R.; Friebe, M.; Illanes, A. Automatic differentiation between veress needle events in laparoscopic access using proximally attached audio signal characterization. Curr. Dir. Biomed. Eng. 2019, 5, 369–371. [Google Scholar] [CrossRef]
- Illanes, A.; Schaufler, A.; Maldonado, I.; Boese, A.; Friebe, M. Time-varying acoustic emission characterization for guidewire coronary artery perforation identification. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Mahmoodian, N.; Schaufler, A.; Pashazadeh, A.; Boese, A.; Friebe, M.; Illanes, A. Proximal detection of guide wire perforation using feature extraction from bispectral audio signal analysis combined with machine learning. Comput. Biol. Med. 2019, 107, 10–17. [Google Scholar] [CrossRef]
- Chen, C.H.; Sühn, T.; Illanes, A.; Maldonado, I.; Ahmad, H.; Wex, C.; Croner, R.; Boese, A.; Friebe, M. Proximally placed signal acquisition sensoric for robotic tissue tool interactions. Curr. Dir. Biomed. Eng. 2018, 4, 67–70. [Google Scholar] [CrossRef]
- Chen, C.H.; Sühn, T.; Kalmar, M.; Maldonado, I.; Wex, C.; Croner, R.; Boese, A.; Friebe, M.; Illanes, A. Texture differentiation using audio signal analysis with robotic interventional instruments. Comput. Biol. Med. 2019, 112, 103370. [Google Scholar] [CrossRef]
- Illanes, A.; Schaufler, A.; Sühn, T.; Boese, A.; Croner, R.; Friebe, M. Surgical audio information as base for haptic feedback in robotic-assisted procedures. Curr. Dir. Biomed. Eng. 2020, 6. [Google Scholar] [CrossRef]
- Sühn, T.; Esmaeili, N.; Spiller, M.; Maximilian, C.; Axel, B.; Jessica, B.; Ajay, P.; Christoph, L.; Michael, F.; Alfredo, I. Vibro-acoustic sensing of tissue-instrument-interactions allows a differentiation of biological tissue in computerized palpation. 2023. manuscript submitted for publication. [Google Scholar]
- Haddadin, S.; Parusel, S.; Johannsmeier, L.; Golz, S.; Gabl, S.; Walch, F.; Sabaghian, M.; Jähne, C.; Hausperger, L.; Haddadin, S. The Franka Emika Robot: A Reference Platform for Robotics Research and Education. IEEE Robot. Autom. Mag. 2022, 29, 46–64. [Google Scholar] [CrossRef]
- Franka Emika GmbH. Franka Control Interface Documentation. Available online: https://frankaemika.github.io/docs/ (accessed on 23 November 2022).
- Open Source Robotics Foundation, Inc. ROS Melodic Morenia. Available online: http://wiki.ros.org/melodic (accessed on 9 January 2023).
- Pieper, D.L. The Kinematics of Manipulators under Computer Control; Stanford University: Stanford, CA, USA, 1969. [Google Scholar]
- Atramentov, A.; LaValle, S.M. Efficient nearest neighbor searching for motion planning. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), Washington, DC, USA, 11–15 May 2002; IEEE: Piscataway, NJ, USA, 2002; Volume 1, pp. 632–637. [Google Scholar]
- Piazzi, A.; Visioli, A. Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans. Ind. Electron. 2000, 47, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.W.; Chang, C.C.; Lin, C.J. A practical guide to support vector classification. 2003. Available online: http://www.datascienceassn.org/sites/default/files/Practical%20Guide%20to%20Support%20Vector%20Classification.pdf (accessed on 23 November 2022).
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Syarif, I.; Prugel-Bennett, A.; Wills, G. SVM parameter optimization using grid search and genetic algorithm to improve classification performance. Telkomnika 2016, 14, 1502. [Google Scholar] [CrossRef]
- Schäfer, M.B.; Glöckner, A.M.; Friedrich, G.R.; Meiringer, J.G.; Pott, P.P. Measuring interaction forces in surgical telemanipulation using conventional instruments. Robotica 2022, 41, 1–13. [Google Scholar] [CrossRef]
- Stryker Corporation. Mako Robotic-Arm for Joint Replacement. Available online: https://www.stryker.com/us/en/joint-replacement/systems/Mako_SmartRobotics_Overview.html#know-more (accessed on 26 November 2022).
- Zimmer Biomet Holdings, Inc. ROSA® Knee System. Available online: https://www.zimmerbiomet.com/en/products-and-solutions/specialties/knee/rosa–knee-system.html (accessed on 26 November 2022).
- Jaiprakash, A.; O’Callaghan, W.B.; Whitehouse, S.L.; Pandey, A.; Wu, L.; Roberts, J.; Crawford, R.W. Orthopaedic surgeon attitudes towards current limitations and the potential for robotic and technological innovation in arthroscopic surgery. J. Orthop. Surg. 2017, 25, 1–6. [Google Scholar] [CrossRef]
- Sühn, T.; Pandey, A.; Friebe, M.; Illanes, A.; Boese, A.; Lohman, C. Acoustic sensing of tissue-tool interactions–potential applications in arthroscopic surgery. Curr. Dir. Biomed. Eng. 2020, 6, 595–598. [Google Scholar] [CrossRef]
Experiment | Palpation Parameter | Signal | |||
---|---|---|---|---|---|
Length | Path | ||||
Exp. 1 | mm/s | s | 25 mm | mm/s) | |
Exp. 2 | mm/s | s | 50 mm | mm/s) | |
Exp. 3 | mm/s | s | 50 mm | mm/s) |
Nr. | Type | Computation Basis | Name | Description |
---|---|---|---|---|
1 | energy related | CWT-based Stationary Spectrum | total energy of the spectrum | |
2 | energy in the VLF band | |||
3 | energy in the LF band | |||
4 | energy in the MF band | |||
5 | energy in the HF band | |||
6 | IDF’s Histogram | histogram’s energy in VLF band | ||
7 | histogram’s energy in the LF band | |||
8 | histogram’s energy in the MF band | |||
9 | histogram’s energy in the HF band | |||
10 | statistical | CWT Spectrum | frequency of maximum excitation | |
11 | IDF | maximal dominant frequency | ||
12 | minimal dominant frequency | |||
13 | variance of dominant frequency |
Dataset | Training Set | Testing Set |
---|---|---|
of mm/s) | of mm/s) | |
of mm/s) | of mm/s) | |
of mm/s) | of mm/s) | |
mm/s) | mm/s) | |
mm/s) |
Dataset | Classifier | Accuracy | Material | Sensitivity | Precision | score | |
---|---|---|---|---|---|---|---|
SVM | 1 | 1 | 1 | 1 | |||
kNN | 1 | 1 | 1 | 1 | |||
SVM | 0.9967 | 1 | 1 | 1 | |||
0.9900 | 1 | 0.9950 | |||||
1 | 0.9901 | 0.9950 | |||||
kNN | 0.9600 | 0.8900 | 1 | 0.9418 | |||
0.9900 | 0.9000 | 0.9429 | |||||
1 | 0.9901 | 0.9950 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sühn, T.; Esmaeili, N.; Mattepu, S.Y.; Spiller, M.; Boese, A.; Urrutia, R.; Poblete, V.; Hansen, C.; Lohmann, C.H.; Illanes, A.; et al. Vibro-Acoustic Sensing of Instrument Interactions as a Potential Source of Texture-Related Information in Robotic Palpation. Sensors 2023, 23, 3141. https://doi.org/10.3390/s23063141
Sühn T, Esmaeili N, Mattepu SY, Spiller M, Boese A, Urrutia R, Poblete V, Hansen C, Lohmann CH, Illanes A, et al. Vibro-Acoustic Sensing of Instrument Interactions as a Potential Source of Texture-Related Information in Robotic Palpation. Sensors. 2023; 23(6):3141. https://doi.org/10.3390/s23063141
Chicago/Turabian StyleSühn, Thomas, Nazila Esmaeili, Sandeep Y. Mattepu, Moritz Spiller, Axel Boese, Robin Urrutia, Victor Poblete, Christian Hansen, Christoph H. Lohmann, Alfredo Illanes, and et al. 2023. "Vibro-Acoustic Sensing of Instrument Interactions as a Potential Source of Texture-Related Information in Robotic Palpation" Sensors 23, no. 6: 3141. https://doi.org/10.3390/s23063141
APA StyleSühn, T., Esmaeili, N., Mattepu, S. Y., Spiller, M., Boese, A., Urrutia, R., Poblete, V., Hansen, C., Lohmann, C. H., Illanes, A., & Friebe, M. (2023). Vibro-Acoustic Sensing of Instrument Interactions as a Potential Source of Texture-Related Information in Robotic Palpation. Sensors, 23(6), 3141. https://doi.org/10.3390/s23063141