Lite and Efficient Deep Learning Model for Bearing Fault Diagnosis Using the CWRU Dataset
Abstract
:1. Introduction
2. Related Works
3. Proposed Bearing Fault Diagnosis Model
3.1. Lite Convolutional Neural Network Model (Lite CNN)
3.2. Dimensionality Reduction of Input Data
- Divide the pixel values of the spectrogram into n bins.
- Calculate the histogram of the spectrogram using n bins, which provide the number of pixels with each gray level interval in its corresponding bin.
- Normalize the histogram by dividing each bin count by the total number of pixels to obtain the probability distribution.
- Calculate the entropy of the spectrogram using Equation (1).
3.3. Spectrogram Using Short-Time Fourier Transform (STFT)
3.4. Evaluation Metrics
4. Experimental Results
4.1. Dataset Description
4.2. Fault Diagnosis Using the Proposed Model (Lite CNN)
4.3. Fault Diagnosis Using the Less Input Dimension
4.4. Comparison Experiment with the Best-Performing Model
4.5. Generalization Performance Experiment
5. Conclusions and Further Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNN | Convolution Neural Network |
CWRU | Case Western Reserve University |
STFT | Short-Time Fourier Transform |
MLP | Multilayer Perceptron |
SVM | Support Vector Machine |
ResNet | Residual Neural Network |
FLOPs | Floating Point Operations |
BPFO | Ball Pass Frequency of the Outer Race |
BPFI | Ball Pass Frequency of the Inner Race |
BSF | Ball Spin Frequency |
References
- Neupane, D.; Kim, Y.; Seok, J. Bearing fault detection using scalogram and switchable normalization-based CNN (SN-CNN). IEEE Access 2021, 9, 88151–88166. [Google Scholar] [CrossRef]
- Huang, W.; Cheng, J.; Yang, Y. Rolling bearing fault diagnosis and performance degradation assessment under variable operation conditions based on nuisance attribute projection. Mech. Syst. Signal Process. 2019, 114, 165–188. [Google Scholar] [CrossRef]
- Liu, R.; Yang, B.; Zio, E.; Chen, X. Artificial Intelligence for Fault Diagnosis of Rotating Machinery: A Review. Mech. Syst. Signal Process. 2016, 108, 33–47. [Google Scholar] [CrossRef]
- de Azevedo, H.D.M.; Araújo, A.M.; Bouchonneau, N. A review of wind turbine bearing condition monitoring: State of the art and challenges. Renew. Sustain. Energy Rev. 2016, 56, 368–379. [Google Scholar] [CrossRef]
- Tchakoua, P.; Wamkeue, R.; Ouhrouche, M.; Slaoui-Hasnaoui, F.; Tameghe, T.A.; Ekemb, G. Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges. Energies 2014, 7, 2595–2630. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Cen, J.; Xiong, J. Rolling bearing fault diagnosis using time-frequency analysis and deep transfer convolutional neural network. IEEE Access 2020, 8, 150248–150261. [Google Scholar] [CrossRef]
- Deveci, B.U.; Celtikoglu, M.; Alp, T.; Albayrak, O.; Unal, P.; Kirci, P. A Comparison of Deep Transfer Learning Methods on Bearing Fault Detection. In Proceedings of the IEEE 2021 8th International Conference on Future Internet of Things and Cloud (FiCloud), Rome, Italy, 23–25 August 2021; pp. 285–292. [Google Scholar]
- Eren, L.; Ince, T.; Kiranyaz, S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier. J. Signal Process. Syst. 2019, 91, 179–189. [Google Scholar] [CrossRef]
- Hasan, M.J.; Sohaib, M.; Kim, J.M. 1D CNN-based transfer learning model for bearing fault diagnosis under variable working conditions. In Computational Intelligence in Information Systems: Proceedings of the Computational Intelligence in Information Systems Conference (CIIS 2018), Brunei, 16–18 November 2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; Volume 3, pp. 13–23. [Google Scholar]
- Yin, H.; Li, Z.; Zuo, J.; Liu, H.; Yang, K.; Li, F. Wasserstein generative adversarial network and convolutional neural network (WG-CNN) for bearing fault diagnosis. Math. Probl. Eng. 2020, 2020, 2604191. [Google Scholar] [CrossRef]
- Niu, G.; Wang, X.; Golda, M.; Mastro, S.; Zhang, B. An optimized adaptive PReLU-DBN for rolling element bearing fault diagnosis. Neurocomputing 2021, 445, 26–34. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, T.; Jiang, B.; Yang, X. Intelligent bearing fault diagnosis using PCA–DBN framework. Neural Comput. Appl. 2020, 32, 10773–10781. [Google Scholar] [CrossRef]
- Hoang, D.T.; Kang, H.J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cogn. Syst. Res. 2019, 53, 42–50. [Google Scholar] [CrossRef]
- Meng, Z.; Zhan, X.; Li, J.; Pan, Z. An enhancement denoising autoencoder for rolling bearing fault diagnosis. Measurement 2018, 130, 448–454. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, I.; Tallur, S. Lightweight CNN enabled edge-based framework for machine health diagnosis. IEEE Access 2021, 9, 84375–84386. [Google Scholar] [CrossRef]
- Case Western Reserve University Bearing Dataset. Available online: https://engineering.case.edu/bearingdatacenter (accessed on 3 July 2020).
- Filippetti, F.; Franceschini, G.; Tassoni, C.; Vas, P. Recent developments of induction motor drives fault diagnosis using AI techniques. IEEE Trans. Ind. Electron. 2000, 47, 994–1004. [Google Scholar] [CrossRef]
- Kankar, P.K.; Sharma, S.C.; Harsha, S.P. Fault diagnosis of ball bearings using machine learning methods. Expert Syst. Appl. 2011, 38, 1876–1886. [Google Scholar] [CrossRef]
- TayebiHaghighi, S.; Koo, I. SVM-based bearing anomaly identification with self-tuning network-fuzzy robust proportional multi integral and smart autoregressive model. Appl. Sci. 2021, 11, 2784. [Google Scholar] [CrossRef]
- McInerny, S.A.; Dai, Y. Basic vibration signal processing for bearing fault detection. IEEE Trans. Educ. 2003, 46, 149–156. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Si, S.; Huang, S. Entropy based fault classification using the Case Western Reserve University data: A benchmark study. IEEE Trans. Reliab. 2019, 69, 754–767. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Liu, Z.; Liang, X.; Si, S. The entropy algorithm and its variants in the fault diagnosis of rotating machinery: A review. IEEE Access 2018, 6, 66723–66741. [Google Scholar] [CrossRef]
- Neupane, D.; Seok, J. Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review. IEEE Access 2020, 8, 93155–93178. [Google Scholar] [CrossRef]
- Jeon, H.; Jung, Y.; Lee, S.; Jung, Y. Area-Efficient Short-Time Fourier Transform Processor for Time–Frequency Analysis of Non-Stationary Signals. Appl. Sci. 2020, 10, 7208. [Google Scholar] [CrossRef]
Sample Rate | 12K | 48K |
---|---|---|
Spectrogram Size | 65 × 50 | |
Time | 0.1413 s | |
Segmentation Size | 1600 | 6400 |
Window Size | 128 | 512 |
Hop Size | 32 | 128 |
Model | Accuracy | Computation Time (s) | # of Parameters (K) | FLOPs (G) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Std | Train | Predict | Total | Total | Dense | ||
ResNet50 | 99.92 | 100 | 99.97 | 0.036 | 147.393 | 1.307 | 148.700 | 47,187 | 23,606 | 0.718 |
CNN3 | 99.87 | 100 | 99.94 | 0.055 | 34.234 | 0.243 | 34.477 | 944 | 901 | 0.285 |
CNN2 | 99.75 | 100 | 99.95 | 0.07 | 27.544 | 0.24 | 27.785 | 924 | 901 | 0.151 |
Lite CNN | 99.96 | 100 | 99.97 | 0.026 | 21.008 | 0.144 | 21.152 | 903 | 901 | 0.0177 |
CNN0 | 96.46 | 100 | 98.66 | 1.315 | 12.981 | 0.112 | 13.094 | 901 | 901 | 0.0018 |
Spectrogram Size | 65 × 50 | 65 × 30 | 65 × 10 | 65 × 5 |
---|---|---|---|---|
Time | 0.1413 s | 0.0880 s | 0.0346 s | 0.0213 s |
Segmentation Size | 1600(6400) | 960(3840) | 320(1280) | 160(640) |
Window Size | 128(512) | 128(512) | 128(512) | 128(512) |
Hop Size | 32(128) | 32(128) | 32(128) | 32(128) |
Input Data Size | Accuracy | Computation Time (s) | # of Parameters (K) | FLOPs (G) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Std | Train | predict | Total | Total | Dense | ||
65 × 50 | 99.96 | 100 | 99.97 | 0.027 | 21.008 | 0.144 | 21.152 | 903 | 901 | 0.0177 |
65 × 30 | 99.92 | 100 | 99.98 | 0.027 | 20.391 | 0.134 | 20.525 | 570 | 568 | 0.0107 |
65 × 10 | 99.92 | 100 | 99.96 | 0.031 | 19.632 | 0.120 | 19.752 | 238 | 235 | 0.00365 |
65 × 5 | 99.25 | 99.95 | 99.75 | 0.187 | 19.605 | 0.120 | 19.725 | 154 | 152 | 0.0019 |
Spectrogram Size | 65 × 10 | 32 × 10 | 16 × 10 | 8 × 10 |
---|---|---|---|---|
Sample rate | 12K | 6K | 3K | 1.5K |
Time | 0.0346 s | 0.0346 s | 0.0346 s | 0.0346 s |
Segmentation Size | 320(1280) | 160(640) | 80(320) | 40(160) |
Window Size | 128(512) | 64(256) | 32(128) | 16(64) |
Hop Size | 32(128) | 16(64) | 8(32) | 4(16) |
Input Data Size | Accuracy | Computation Time (s) | # of Parameter (K) | FLOPs (G) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Std | Train | Predict | Total | Total | Dense | ||
65 × 10 | 99.92 | 100 | 99.96 | 0.031 | 19.632 | 0.120 | 19.752 | 238 | 235 | 0.00365 |
32 × 10 | 99.70 | 100 | 99.86 | 0.112 | 18.694 | 0.120 | 18.814 | 153 | 151 | 0.00187 |
16 × 10 | 93.42 | 97.00 | 95.26 | 0.980 | 18.480 | 0.118 | 18.598 | 112 | 110 | 0.00100 |
8 × 10 | 83.54 | 87.21 | 85.20 | 1.142 | 18.395 | 0.119 | 18.514 | 92 | 89 | 0.00057 |
Model | Accuracy | Computation Time(s) | FLOPs (G) | # of Parameters (K) | ||
---|---|---|---|---|---|---|
Min | Max | Mean | ||||
SOTA model (ResNet50 based on transfer learning) | 99.90 | 100 | 99.95 | 294 | 3.8 over | 23,900 over |
Proposed lite CNN | 99.92 | 100 | 99.95 | 18.326 | 0.00187 | 153 |
Data Set | Fault Location | Sensor Location | # Classes |
---|---|---|---|
Set1 | DE | DE | 12 |
Set2 | FE | 10 | |
Set3 | BA | 9 | |
Set4 | FE | DE | 10 |
Set5 | FE | 10 | |
Set6 | BA | 9 | |
Set7 | DE | DE | 10 |
Set8 | FE | 10 |
Data | Accuracy | Computation Time (s) | |||||
---|---|---|---|---|---|---|---|
Min | Max | Mean | Std | Train | Predict | Total | |
Set1 | 99.70 | 100 | 99.86 | 0.111539 | 18.694 | 0.120 | 18.814 |
Set2 | 99.85 | 100 | 99.93 | 0.050990 | 17.684 | 0.138 | 17.821 |
Set3 | 99.72 | 100 | 99.89 | 0.090752 | 16.054 | 0.133 | 16.187 |
Set4 | 99.65 | 99.85 | 99.76 | 0.056789 | 17.564 | 0.134 | 17.698 |
Set5 | 99.70 | 99.90 | 99.78 | 0.050990 | 17.596 | 0.139 | 17.735 |
Set6 | 99.72 | 99.94 | 99.81 | 0.066068 | 16.09 | 0.133 | 16.223 |
Set7 | 99.90 | 100 | 99.95 | 0.031623 | 17.58 | 0.138 | 17.718 |
Set8 | 99.95 | 100 | 99.98 | 0.025000 | 17.758 | 0.139 | 17.897 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, Y.; Jo, H.; Ban, S.-W. Lite and Efficient Deep Learning Model for Bearing Fault Diagnosis Using the CWRU Dataset. Sensors 2023, 23, 3157. https://doi.org/10.3390/s23063157
Yoo Y, Jo H, Ban S-W. Lite and Efficient Deep Learning Model for Bearing Fault Diagnosis Using the CWRU Dataset. Sensors. 2023; 23(6):3157. https://doi.org/10.3390/s23063157
Chicago/Turabian StyleYoo, Yubin, Hangyeol Jo, and Sang-Woo Ban. 2023. "Lite and Efficient Deep Learning Model for Bearing Fault Diagnosis Using the CWRU Dataset" Sensors 23, no. 6: 3157. https://doi.org/10.3390/s23063157
APA StyleYoo, Y., Jo, H., & Ban, S. -W. (2023). Lite and Efficient Deep Learning Model for Bearing Fault Diagnosis Using the CWRU Dataset. Sensors, 23(6), 3157. https://doi.org/10.3390/s23063157