Convolutional Neural Network for Individual Identification Using Phase Space Reconstruction of Electrocardiogram
Abstract
:1. Introduction
2. Materials and Methods
2.1. ECG Biometric Data
2.2. Data Processing and Phase Space Reconstruction
- (1)
- (2)
- Each detected QRS was further verified to exclude wrong detections and ventricular premature contraction beats.
- (3)
- For each inclusive heartbeat, the preceding 35% and the succeeding 65% of the samples around the QRS fiducial point in a cardiac cycle were extracted.
2.3. ECG-Biometric Network
2.4. Network Training and Testing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, P.; Guo, L.; Li, M.; Fang, Y. Practical privacy-preserving ECG-based authentication for IoT-based healthcare. IEEE Internet Things J. 2019, 6, 9200–9210. [Google Scholar] [CrossRef]
- Biel, L.; Pettersson, O.; Philipson, L.; Wide, P. ECG analysis: A new approach in human identification. IEEE Trans. Instrum. Meas. 2001, 50, 808–812. [Google Scholar] [CrossRef] [Green Version]
- Israel, S.A.; Irvine, J.M.; Cheng, A.; Wiederhold, M.D.; Wiederhold, B.K. ECG to identify individuals. Pattern Recognit. 2005, 38, 133–142. [Google Scholar] [CrossRef]
- Kyoso, M.; Uchiyama, A. Development of an ECG Identification System. In Proceedings of the 2001 Conference 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 25–28 October 2001; Volume 3724, pp. 3721–3723. [Google Scholar]
- Shen, T.W.; Tompkins, W.J.; Hu, Y.H. One-Lead ECG for Identity Verification. In Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society Engineering in Medicine and Biology, Houston, TX, USA, 23–26 October 2002; Volume 61, pp. 62–63. [Google Scholar]
- Palaniappan, R.; Krishnan, S.M. Identifying Individuals Using ECG beats. In Proceedings of the 2004 International Conference on Signal Processing and Communications, 2004. SPCOM’ 04., Bangalore, India, 11–14 December 2004; pp. 569–572. [Google Scholar]
- Tan, R.; Perkowski, M. Toward improving electrocardiogram (ECG) biometric verification using mobile sensors: A two-stage classifier approach. Sensors 2017, 17, 410. [Google Scholar] [CrossRef]
- Wübbeler, G.; Stavridis, M.; Kreiseler, D.; Bousseljot, R.-D.; Elster, C. Verification of humans using the electrocardiogram. Pattern Recognit. Lett. 2007, 28, 1172–1175. [Google Scholar] [CrossRef]
- Lee, W.; Kim, S.; Kim, D. Individual biometric identification using multi-cycle electrocardiographic waveform patterns. Sensors 2018, 18, 1005. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.D.C.; Hamdy, M.M.; Badre, A.; Badee, V. Wavelet distance measure for person identification using electrocardiograms. IEEE Trans. Instrum. Meas. 2008, 57, 248–253. [Google Scholar] [CrossRef]
- Irvine, J.M.; Israel, S.A.; Todd Scruggs, W.; Worek, W.J. eigenPulse: Robust human identification from cardiovascular function. Pattern Recognit. 2008, 41, 3427–3435. [Google Scholar] [CrossRef]
- Fang, S.-C.; Chan, H.-L. Human identification by quantifying similarity and dissimilarity in electrocardiogram phase space. Pattern Recognit. 2009, 42, 1824–1831. [Google Scholar] [CrossRef]
- Fang, S.-C.; Chan, H.-L. QRS detection-free electrocardiogram biometrics in the reconstructed phase space. Pattern Recognit. Lett. 2013, 34, 595–602. [Google Scholar] [CrossRef]
- Luo, S.; Johnston, P. A review of electrocardiogram filtering. J. Electrocardiol. 2010, 43, 486–496. [Google Scholar] [CrossRef]
- Adochiei, N.; David, V.; Adochiei, F.; Tudosa, I. ECG Waves and Features Extraction Using Wavelet Multi-Resolution Analysis. In Proceedings of the 2011 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 24–26 November 2011; pp. 1–4. [Google Scholar]
- Zhang, Q.; Zhou, D.; Zeng, X. HeartID: A multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications. IEEE Access 2017, 5, 11805–11816. [Google Scholar] [CrossRef]
- Akhbari, M.; Shamsollahi, M.B.; Jutten, C.; Armoundas, A.A.; Sayadi, O. ECG denoising and fiducial point extraction using an extended Kalman filtering framework with linear and nonlinear phase observations. Physiol. Meas. 2016, 37, 203. [Google Scholar] [CrossRef] [Green Version]
- Chee-Ming, T.; Salleh, S.H. ECG based Personal Identification Using Extended Kalman Filter. In Proceedings of the 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010), Kuala Lumpur, Malaysia, 10–13 May 2010; pp. 774–777. [Google Scholar]
- Lynn, H.M.; Pan, S.B.; Kim, P. A Deep bidirectional GRU network model for biometric electrocardiogram classification based on recurrent neural networks. IEEE Access 2019, 7, 145395–145405. [Google Scholar] [CrossRef]
- Hammad, M.; Liu, Y.; Wang, K. Multimodal biometric authentication systems using convolution neural network based on different level fusion of ECG and fingerprint. IEEE Access 2019, 7, 26527–26542. [Google Scholar] [CrossRef]
- Byeon, Y.-H.; Pan, S.-B.; Kwak, K.-C. Intelligent deep models based on scalograms of electrocardiogram signals for biometrics. Sensors 2019, 19, 935. [Google Scholar] [CrossRef] [Green Version]
- Ciocoiu, I.B.; Cleju, N. Off-the-Person ECG Biometrics Using Convolutional Neural Networks. In Proceedings of the 2019 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 11–12 July 2019; pp. 1–4. [Google Scholar]
- Ranjan, A. Permanence of ECG Biometric: Experiments Using Convolutional Neural Networks. In Proceedings of the 2019 International Conference on Biometrics (ICB), Crete, Greece, 4–7 June 2019; pp. 1–6. [Google Scholar]
- Kim, M.-G.; Ko, H.; Pan, S.B. A study on user recognition using 2D ECG based on ensemble of deep convolutional neural networks. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 1859–1867. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhou, D. Deep arm/ear-ECG image learning for highly wearable biometric human identification. Ann. Biomed. Eng. 2018, 46, 122–134. [Google Scholar] [CrossRef]
- Takens, F. Detecting Strange Attractors in Turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Springer: Berlin/Heidelberg, Germany, 2006; pp. 366–381. [Google Scholar]
- Kaplan, D.T.; Cohen, R.J. Is fibrillation chaos? Circ. Res. 1990, 67, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-W.; Kim, K.-S.; Lee, B.; Lee, B.; Lee, M.-H. A real time QRS detection using delay-coordinate mapping for the microcontroller implementation. Ann. Biomed. Eng. 2002, 30, 1140–1151. [Google Scholar] [CrossRef]
- Chan, H.-L.; Wang, C.-L.; Fang, S.-C.; Chao, P.-K.; Wei, J.-D. Recognition of ventricular extrasystoles over the reconstructed phase space of electrocardiogram. Ann. Biomed. Eng. 2010, 38, 813–823. [Google Scholar] [CrossRef]
- Chen, H.; Das, S.; Morgan, J.M.; Maharatna, K. Prediction and classification of ventricular arrhythmia based on phase-space reconstruction and fuzzy c-means clustering. Comput. Biol. Med. 2022, 142, 105180. [Google Scholar] [CrossRef] [PubMed]
- Bousseljot, R.; Kreiseler, D.; Schnabel, A. Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet. J. Biomed. Tech. Biomed. Eng. 1995, 40, 317–318. [Google Scholar] [CrossRef]
- Sznajder, M.; Łukowska, M. Python Online and Offline ECG QRS Detector based on the Pan-Tomkins algorithm (Version v1.1.0). Zenodo 2017. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, BME–32, 230–236. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Sornmo, L. Vectorcardiographic loop alignment and morphologic beat-to-beat variability. IEEE Trans. Biomed. Eng. 1998, 45, 1401–1413. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Szegedy, C.; Wei, L.; Yangqing, J.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Byeon, Y.-H.; Lee, J.-N.; Pan, S.-B.; Kwak, K.-C. Multilinear EigenECGs and FisherECGs for individual identification from information obtained by an electrocardiogram sensor. Symmetry 2018, 10, 487. [Google Scholar] [CrossRef] [Green Version]
- da Silva, H.P.; Lourenço, A.; Fred, A.; Raposo, N.; Aires-de-Sousa, M. Check Your Biosignals Here: A new dataset for off-the-person ECG biometrics. Comput. Methods Programs Biomed. 2014, 113, 503–514. [Google Scholar] [CrossRef]
- Wahabi, S.; Pouryayevali, S.; Hari, S.; Hatzinakos, D. On evaluating ECG biometric systems: Session-dependence and body posture. IEEE Trans. Inf. Forensics Secur. 2014, 9, 2002–2013. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Zhou, D.; Zeng, X. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals. Biomed. Eng. Online 2017, 16, 23. [Google Scholar] [CrossRef] [Green Version]
Layer | Input | Output | Kernel | Padding | Stride | |
---|---|---|---|---|---|---|
Feature extraction | Conv2d | 256 × 256 × 1 | 62 × 62 × 96 | 12 × 12 | 4 | |
Max pooling | 62 × 62 × 96 | 31 × 31 × 96 | 2 × 2 | 2 | ||
Conv2d | 31 × 31 × 96 | 31 × 31 × 256 | 5 × 5 | 2 | 1 | |
Max pooling | 31 × 31 × 256 | 15 × 15 × 256 | 3 × 3 | 2 | ||
Conv2d | 15 × 15 × 256 | 15 × 15 × 384 | 3 × 3 | 1 | 1 | |
Conv2d | 15 × 15 × 384 | 15 × 15 × 384 | 3 × 3 | 1 | 1 | |
Conv2d | 15 × 15 × 256 | 15 × 15 × 256 | 3 × 3 | 1 | 1 | |
Max pooling | 15 × 15 × 256 | 7 × 7 × 256 | 3 × 3 | 2 | ||
Classifier | FCN | 12,544 | 4096 | |||
Dropout p = 0.5 | ||||||
FCN | 4096 | 4096 | ||||
Dropout p = 0.5 | ||||||
FCN | 4096 | 115 |
16 × 16 | 32 × 32 | 64 × 64 | 128 × 128 | 256 × 256 | |
---|---|---|---|---|---|
Epochs 16~30 | |||||
τ = 2 ms | 97.05 | 97.41 | 98.55 | 98.53 | 98.62 |
τ = 8 ms | 98.14 | 98.91 | 99.19 | 99.11 | 98.83 |
τ = 16 ms | 98.76 | 99.03 | 99.28 | 99.25 | 99.33 |
τ = 24 ms | 99.17 | 99.39 | 99.27 | 99.51 | 99.41 |
τ = 36 ms | 98.84 | 99.16 | 99.18 | 99.38 | 99.07 |
Epochs 31~45 | |||||
τ = 2 ms | 97.18 | 97.92 | 98.81 | 98.80 | 98.81 |
τ = 8 ms | 98.65 | 99.24 | 99.01 | 99.26 | 99.07 |
τ = 16 ms | 99.14 | 99.13 | 99.26 | 99.44 | 99.36 |
τ = 24 ms | 99.42 | 99.49 | 99.47 | 99.45 | 99.42 |
τ = 36 ms | 99.04 | 99.09 | 99.17 | 99.35 | 99.36 |
Epochs 46~60 | |||||
τ = 2 ms | 97.63 | 98.43 | 99.15 | 98.88 | 98.71 |
τ = 8 ms | 98.89 | 99.03 | 99.17 | 99.01 | 99.13 |
τ = 16 ms | 99.28 | 99.34 | 99.34 | 99.50 | 99.55 |
τ = 24 ms | 99.39 | 99.52 | 99.59 | 99.44 | 99.39 |
τ = 36 ms | 99.22 | 99.37 | 99.23 | 99.46 | 99.34 |
Epochs 61~75 | |||||
τ = 2 ms | 98.14 | 98.62 | 99.04 | 98.93 | 99.05 |
τ = 8 ms | 98.82 | 99.31 | 99.37 | 99.2 | 99.17 |
τ = 16 ms | 99.36 | 99.37 | 99.59 | 99.54 | 99.58 |
τ = 24 ms | 99.45 | 99.63 | 99.58 | 99.58 | 99.54 |
τ = 36 ms | 99.26 | 99.49 | 99.49 | 99.51 | 99.51 |
Layer | Input | Output | Kernel | Padding | Stride | |
---|---|---|---|---|---|---|
Feature extraction | Conv2d | 32 × 32 × 1 | 28 × 28 × 32 | 5 × 5 | 1 | |
Max pooling | 28 × 28 × 32 | 14 × 14 × 32 | 2 × 2 | 2 | ||
Conv2d | 14 × 14 × 32 | 13 × 13 × 32 | 2 × 2 | 1 | ||
Classifier | FCN | 5408 | 1024 | |||
Dropout p = 0.5 | ||||||
FCN | 1024 | 1024 | ||||
Dropout p = 0.5 | ||||||
FCN | 1024 | 115 |
Authors | Dataset | Subject No. | Input ECG | Transformation | Model | Accuracy, % |
---|---|---|---|---|---|---|
Hammad et al. [20] | PTB [31] CYBHi [40] | 100 65 | single beat | plot of amplitude vs. time | VGG [36] | 96.8 97.2 |
Byeon et al. [21] | PTB, CU [39] | 211 100 | single beat | continuous wavelet transform | AlexNet [34] GoogleNet [37] ResNet [38] | 97.4, 92.3 97.8, 93.1 98.1, 93.2 |
Ciocoiu and Cleju [22] | UofT [41] | 20 | single beat | phase-space reconstruction | 3-layer CNN | 97.2 |
Kim et al. [24] | MIT-BIH NSRDB [42] | 31 | multiple beats | plot of amplitude vs. time with beats stacking | ensemble of 2 CNNs and RNN | 98.9 |
Zhang and Zhou [25] | SADB [43] | 10 | multiple beats | phase-space reconstruction | 3-layer CNN | 98.8 |
Present study | PTB | 115 | single beat | phase-space reconstruction | AlexNet | 99.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, H.-L.; Chang, H.-W.; Hsu, W.-Y.; Huang, P.-J.; Fang, S.-C. Convolutional Neural Network for Individual Identification Using Phase Space Reconstruction of Electrocardiogram. Sensors 2023, 23, 3164. https://doi.org/10.3390/s23063164
Chan H-L, Chang H-W, Hsu W-Y, Huang P-J, Fang S-C. Convolutional Neural Network for Individual Identification Using Phase Space Reconstruction of Electrocardiogram. Sensors. 2023; 23(6):3164. https://doi.org/10.3390/s23063164
Chicago/Turabian StyleChan, Hsiao-Lung, Hung-Wei Chang, Wen-Yen Hsu, Po-Jung Huang, and Shih-Chin Fang. 2023. "Convolutional Neural Network for Individual Identification Using Phase Space Reconstruction of Electrocardiogram" Sensors 23, no. 6: 3164. https://doi.org/10.3390/s23063164
APA StyleChan, H. -L., Chang, H. -W., Hsu, W. -Y., Huang, P. -J., & Fang, S. -C. (2023). Convolutional Neural Network for Individual Identification Using Phase Space Reconstruction of Electrocardiogram. Sensors, 23(6), 3164. https://doi.org/10.3390/s23063164