Design and Simulation of Au/SiO2 Nanospheres Based on SPR Refractive Index Sensor
Abstract
:1. Introduction
2. Theoretical Analysis and Device Modeling and Simulation Setup
3. Results and Discussion
3.1. Au Structure
3.2. Au/SiO2 Thin Film Structure
3.3. Au Array Structure
3.4. Au/SiO2 Nanospheres
3.5. Au/SiO2 Nanorod Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, S.; Baillargeat, D.; Ho, H.P.; Yong, K.T. Nanomaterials Enhanced Surface Plasmon Resonance for Biological and Chemical Sensing Applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [Green Version]
- Gupta, B.D.; Kant, R. [INVITED] Recent Advances in Surface Plasmon Resonance Based Fiber Optic Chemical and Biosensors Utilizing Bulk and Nanostructures. Opt. Laser Technol. 2018, 101, 144–161. [Google Scholar] [CrossRef]
- D’Agata, R.; Bellassai, N.; Jungbluth, V.; Spoto, G. Recent Advances in Antifouling Materials for Surface Plasmon Resonance Biosensing in Clinical Diagnostics and Food Safety. Polymers 2021, 13, 1929. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Tong, H.; Wen, X.; Su, Y.; Zhu, J.; Wu, Y.; Wang, X.; Qi, Y.; Wu, X. Wide Range Refractive Index Sensor Based on a Coupled Structure of Au Nanocubes and Au Film. Opt. Mater. Express 2019, 9, 3079–3088. [Google Scholar] [CrossRef]
- Xu, H.; Song, Y.; Zhu, P.; Zhao, W.; Liu, T.; Wang, Q.; Zhao, T. Alcohol Sensor Based on Surface Plasmon Resonance of ZnO Nanoflowers/Au Structure. Materials 2022, 15, 189. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, P.; Aldinger, U.; Schwotzer, G.; Diekmann, S.; Steinrücke, P. Real Time Sensing of Specific Molecular Binding Using Surface Plasmon Resonance Spectroscopy. Sens. Actuators B Chem. 1999, 54, 166–175. [Google Scholar] [CrossRef]
- Pfeifer, P. Miniaturized Low-Cost Surface Plasmon Resonance Sensor Prototype with Spectral Fiber-Optic Readout for Application in Biochemical Monitoring. In Proceedings of the 13th International Conference on Optical Fiber Sensors, Kyongju, Republic of Korea, 12–16 April 1999; Volume 3746, pp. 124–127. [Google Scholar] [CrossRef]
- Couture, M.; Zhao, S.S.; Masson, J.F. Modern Surface Plasmon Resonance for Bioanalytics and Biophysics. Phys. Chem. Chem. Phys. 2013, 15, 11190–11216. [Google Scholar] [CrossRef]
- Song, Y.; Sun, M.; Wu, H.; Zhao, W.; Wang, Q. Temperature Sensor Based on Surface Plasmon Resonance with TiO2-Au-TiO2 Triple Structure. Materials 2022, 15, 7766. [Google Scholar] [CrossRef] [PubMed]
- Maurya, J.B.; Prajapati, Y.K.; Raikwar, S.; Saini, J.P. A Silicon-Black Phosphorous Based Surface Plasmon Resonance Sensor for the Detection of NO2 Gas. Optik 2018, 160, 428–433. [Google Scholar] [CrossRef]
- Challener, W.A.; Ollmann, R.R.; Kam, K.K. A Surface Plasmon Resonance Gas Sensor in a ‘compact Disc’ Format. Sens. Actuators B Chem. 1999, 56, 254–258. [Google Scholar] [CrossRef]
- Wang, J.; Fan, S.; Xia, Y.; Yang, C.; Komarneni, S. Room-Temperature Gas Sensors Based on ZnO Nanorod/Au Hybrids: Visible-Light-Modulated Dual Selectivity to NO2 and NH3. J. Hazard. Mater. 2020, 381, 120919. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Hu, S.; Wu, Y.; Deng, D.; Luo, Y.; Chen, Z. Ultrasensitive Biosensor with Hyperbolic Metamaterials Composed of Silver and Zinc Oxide. Nanomaterials 2021, 11, 2220. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Liu, W.; Luo, Y.; Guan, H.; Xie, Z.; Xia, K.; He, M.; Yu, J.; Chen, Z.; Chen, Y.; et al. Titanium Dioxide Nanoparticle Modified Plasmonic Interface for Enhanced Refractometric and Biomolecular Sensing. Opt. Express 2018, 26, 33226–33237. [Google Scholar] [CrossRef]
- Cai, H.; Wang, M.; Wu, Z.; Liu, J.; Wang, X. Performance Enhancement of SPR Biosensor Using Graphene-MoS2 Hybrid Structure. Nanomaterials 2022, 12, 2219. [Google Scholar] [CrossRef]
- Lee, K.S.; Son, J.M.; Jeong, D.Y.; Lee, T.S.; Kim, W.M. Resolution Enhancement in Surface Plasmon Resonance Sensor Based on Waveguide Coupled Mode by Combining a Bimetallic Approach. Sensors 2010, 10, 11390–11399. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xia, L.; Li, C. Surface Plasmon Resonance Sensor Based on a Novel D-Shaped Photonic Crystal Fiber for Low Refractive Index Detection. IEEE Photonics J. 2018, 10, 6800709. [Google Scholar] [CrossRef]
- Zhou, J.; Qi, Q.; Wang, C.; Qian, Y.; Liu, G.; Wang, Y.; Fu, L. Surface Plasmon Resonance (SPR) Biosensors for Food Allergen Detection in Food Matrices. Biosens. Bioelectron. 2019, 142, 111449. [Google Scholar] [CrossRef]
- Potdar, R.P.; Khollam, Y.B.; Shaikh, S.F.; More, P.S.; Rana, A. ul H.S. Polyvinylpyrrolidone-Capped Silver Nanoparticles for Highly Sensitive and Selective Optical Fiber-Based Ammonium Sensor. Nanomaterials 2022, 12, 3373. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Fur Nat.-Sect. A J. Phys. Sci. 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Kong, L.; Lv, J.; Gu, Q.; Ying, Y.; Jiang, X.; Si, G. Sensitivity-Enhanced SPR Sensor Based on Graphene and Subwavelength Silver Gratings. Nanomaterials 2020, 10, 2125. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Song, H.; Choi, J.R.; Kim, K. A Localized Surface Plasmon Resonance Sensor Using Double-Metal-Complex Nanostructures and a Review of Recent Approaches. Sensors 2017, 18, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C.L.; Olivo, M. Surface Plasmon Resonance Imaging Sensors: A Review. Plasmonics 2014, 9, 809–824. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, S.; Tian, X.; Xu, H. Highly Tunable Propagating Surface Plasmons on Supported Silver Nanowires. Proc. Natl. Acad. Sci. USA 2013, 110, 4494–4499. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wei, H.; Pan, D.; Xu, H. Controlling the Radiation Direction of Propagating Surface Plasmons on Silver Nanowires. Laser Photonics Rev. 2014, 8, 596–601. [Google Scholar] [CrossRef]
- Agharazy Dormeny, A.; Abedini Sohi, P.; Kahrizi, M. Design and Simulation of a Refractive Index Sensor Based on SPR and LSPR Using Gold Nanostructures. Results Phys. 2020, 16, 102869. [Google Scholar] [CrossRef]
- Pang, L.; Hwang, G.M.; Slutsky, B.; Fainman, Y. Spectral Sensitivity of Two-Dimensional Nanohole Array Surface Plasmon Polariton Resonance Sensor. Appl. Phys. Lett. 2007, 91, 123112. [Google Scholar] [CrossRef]
- de Leebeeck, A.; Kumar, L.K.S.; de Lange, V.; Sinton, D.; Gordon, R.; Brolo, A.G. On-Chip Surface-Based Detection with Nanohole Arrays. Anal. Chem. 2007, 79, 4094–4100. [Google Scholar] [CrossRef]
- Xu, T.; Geng, Z. Strategies to Improve Performances of LSPR Biosensing: Structure, Materials, and Interface Modification. Biosens. Bioelectron. 2021, 174, 112850. [Google Scholar] [CrossRef]
- Kumar-Krishnan, S.; Guadalupe-Ferreira García, M.; Prokhorov, E.; Estevez-González, M.; Pérez, R.; Esparza, R.; Meyyappan, M. Synthesis of Gold Nanoparticles Supported on Functionalized Nanosilica Using Deep Eutectic Solvent for an Electrochemical Enzymatic Glucose Biosensor. J. Mater. Chem. B 2017, 5, 7072–7081. [Google Scholar] [CrossRef]
- Li, Z.; Hou, J.; Gu, X.; Gao, L.; Su, G.; Li, F. M-SiO2@Cu and m-SiO2@TiO2@Cu Core–Shell Microspheres: Synthesis, Characterization and Catalytic Activities. J. Mater. Sci. 2022, 57, 4990–5005. [Google Scholar] [CrossRef]
- Guerrero-Martínez, A.; Pérez-Juste, J.; Liz-Marzán, L.M. Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials. Adv. Mater. 2010, 22, 1182–1195. [Google Scholar] [CrossRef] [PubMed]
- Marindra, A.M.J.; Tian, G.Y. Chipless RFID Sensor for Corrosion Characterization Based on Frequency Selective Surface and Feature Fusion. Smart Mater. Struct. 2020, 29, 125010. [Google Scholar] [CrossRef]
- Liz-Marzán, L.M.; Mulvaney, P. The Assembly of Coated Nanocrystals. J. Phys. Chem. B 2003, 107, 7312–7326. [Google Scholar] [CrossRef]
- Zeng, S.; Hu, S.; Xia, J.; Anderson, T.; Dinh, X.Q.; Meng, X.M.; Coquet, P.; Yong, K.T. Graphene–MoS2 Hybrid Nanostructures Enhanced Surface Plasmon Resonance Biosensors. Sens. Actuators B Chem. 2015, 207, 801–810. [Google Scholar] [CrossRef]
- Shivangani; Alotaibi, M.F.; Al-Hadeethi, Y.; Lohia, P.; Singh, S.; Dwivedi, D.K.; Umar, A.; Alzayed, H.M.; Algadi, H.; Baskoutas, S. Numerical Study to Enhance the Sensitivity of a Surface Plasmon Resonance Sensor with BlueP/WS2-Covered Al2O3-Nickel Nanofilms. Nanomaterials 2022, 12, 2205. [Google Scholar] [CrossRef]
- Shalabney, A.; Abdulhalim, I. Sensitivity-Enhancement Methods for Surface Plasmon Sensors. Laser Photonics Rev. 2011, 5, 571–606. [Google Scholar] [CrossRef]
- Alobaidi, W.M.; Nima, Z.A.; Sandgren, E. Localised Surface Plasmon-like Resonance Generated by Microwave Electromagnetic Waves in Pipe Defects. Nondestruct. Test. Eval. 2018, 33, 109–118. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Mao, L.; Li, Z.; Zhou, C.; Liu, X.; Zheng, S.; Hu, Y. SPR Quantitative Analysis of Direct Detection of Atrazine Traces on Au-Nanoparticles: Nanoparticles Size Effect. Sens. Actuators B Chem. 2015, 218, 1–7. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, J.; Tong, H.; Yang, X.; Wu, X.; Pang, Z.; Yang, H.; Qi, Y. A Theoretical Study of a Plasmonic Sensor Comprising a Gold Nano-Disk Array on Gold Film with a SiO2 Spacer. Chin. Phys. B 2019, 28, 044201. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pandey, A.K. Metal Oxide Grating Based Plasmonic Refractive Index Sensor with Si Layer in Optical Communication Band. IEEE Sens. J. 2020, 20, 1275–1282. [Google Scholar] [CrossRef]
- Han, Y.; Guo, Z.; Teng, S.; Xia, H.; Wang, D.; Han, M.Y.; Yang, W. Rationalized Fabrication of Structure-Tailored Multishelled Hollow Silica Spheres. Chem. Mater. 2019, 31, 7470–7477. [Google Scholar] [CrossRef]
- Ogawa, M. Mesoporous Silica Layer: Preparation and Opportunity. Chem. Rec. 2017, 17, 217–232. [Google Scholar] [CrossRef] [PubMed]
Distance (nm) | Radius (nm) | Wavelength (nm) n = 1.33 | Wavelength (nm) n = 1.365 | Sensitivity (nm/RIU) | FWHM (nm) | FOM (/RIU) |
---|---|---|---|---|---|---|
10 | 20 | 748 | 848 | 2875.4 | 86.359 | 33.30 |
20 | 25 | 744 | 844 | 2857.14 | 98.637 | 28.97 |
30 | 20 | 695 | 784 | 2542.9 | 84.045 | 30.26 |
40 | 20 | 682 | 769 | 2600 | 92.764 | 28.03 |
Distance (nm) | Wavelength (nm) n = 1.33 | Wavelength (nm) n = 1.365 | ΔWavelength (nm) | Sensitivity (nm/RIU) | FHWM (nm) | FOM (/RIU) |
---|---|---|---|---|---|---|
10 | 814 | 927 | 113 | 3228.57 | 119.372 | 27.05 |
20 | 760 | 861 | 101 | 2885.71 | 95.712 | 30.15 |
30 | 729 | 824 | 95 | 2714.29 | 90.578 | 29.97 |
Radius (nm) | Wavelength (nm) n = 1.33 | Wavelength (nm) n = 1.365 | ΔWavelength (nm) | Sensitivity (nm/RIU) | FHWM (nm) | FOM (/RIU) |
---|---|---|---|---|---|---|
10 | 711 | 803 | 92 | 2628.57 | 87.754 | 29.95 |
15 | 740 | 838 | 98 | 2800 | 93.653 | 29.90 |
20 | 760 | 861 | 101 | 2885.71 | 95.712 | 30.15 |
25 | 777 | 881 | 104 | 2971.43 | 103.561 | 28.69 |
30 | 787 | 893 | 106 | 3028.57 | 107.691 | 28.12 |
35 | 792 | 897 | 105 | 3000 | 111.620 | 26.88 |
Height (nm) | Wavelength (nm) n = 1.33 | Wavelength (nm) n = 1.365 | ΔWavelength (nm) | Sensitivity (nm/RIU) | FHWM (nm) | FOM (/RIU) |
---|---|---|---|---|---|---|
20 | 700 | 787 | 87 | 2485.7 | 80.135 | 31.02 |
40 | 758 | 859 | 101 | 2885.71 | 95.712 | 30.15 |
60 | 760 | 862 | 102 | 2914.29 | 100.036 | 29.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Song, Y.; Wu, H.; Wang, Q. Design and Simulation of Au/SiO2 Nanospheres Based on SPR Refractive Index Sensor. Sensors 2023, 23, 3163. https://doi.org/10.3390/s23063163
Sun M, Song Y, Wu H, Wang Q. Design and Simulation of Au/SiO2 Nanospheres Based on SPR Refractive Index Sensor. Sensors. 2023; 23(6):3163. https://doi.org/10.3390/s23063163
Chicago/Turabian StyleSun, Meng, Yutong Song, Haoyu Wu, and Qi Wang. 2023. "Design and Simulation of Au/SiO2 Nanospheres Based on SPR Refractive Index Sensor" Sensors 23, no. 6: 3163. https://doi.org/10.3390/s23063163
APA StyleSun, M., Song, Y., Wu, H., & Wang, Q. (2023). Design and Simulation of Au/SiO2 Nanospheres Based on SPR Refractive Index Sensor. Sensors, 23(6), 3163. https://doi.org/10.3390/s23063163