A Critical Review on Factors Affecting the User Adoption of Wearable and Soft Robotics
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
- “soft” AND “wearable”
- “soft” AND “exoskeleton”
- “wearable” AND “exoskeleton”
- “soft” AND “wearable” AND “robot”
- “soft” AND “wearable” AND “exoskeleton”
2.2. Eligibility
2.3. Selection of Study
3. Results
3.1. Electric Motor Driven Tendon Cable
Year | Reference | Joint Movement | Function |
---|---|---|---|
2022 | Kim et al. [42] | Hip | Assistive |
2022 | Su et al. [43] | Forearm | Assistive |
2022 | Chen et al. [44] | Fingers Thumb | Rehabilitative |
2022 | Otálora et al. [45] | Hip Knee Ankle | Rehabilitative |
2022 | Yang et al. [46] | Hip Abduction | Assistive |
2022 | Cao et al. [47] | Hip Flexion | Assistive |
2022 | Shi et al. [48] | Knee | Assistive |
2022 | Missiroli et al. [49] | Elbow Shoulder | Assistive |
2022 | Samper-Escudero et al. [50] | Elbow Shoulder | Assistive |
2022 | Noronha et al. [51] | Elbow Finger | Rehabilitative |
2022 | Ma et al. [52] | Knee Ankle | Rehabilitative |
2022 | Firouzi et al. [53] | Hip Knee | Assistive |
2021 | Nazari et al. [54] | Fingers Thumb | Rehabilitative |
2021 | Zhang et al. [55] | Knee | Assistive |
2021 | Goršič et al. [56] | Trunk | Passive Support |
2021 | Samper-Escudero et al. [57] | Elbow Shoulder | Assistive |
2021 | Ciullo Andrea et al. [58] | Supernumerary Limb | Assistive |
2021 | Bützer et al. [59] | Fingers Thumb | Assistive |
2021 | Liu et al. [60] | Hip | Assistive |
2021 | Chiaradia et al. [61] | Wrist | Rehabilitative |
2021 | Fulton et al. [62] | Forearm | Rehabilitative |
2021 | Chen et al. [63] | Hip | Assistive |
2020 | Zhang et al. [64] | Hip | Assistive |
2020 | Hennig et al. [65] | Fingers | Assistive |
2020 | Xia et al. [66] | Ankle | Rehabilitative |
2020 | Lee et al. [67] | Knee | Assistive |
2020 | Hosseini et al. [68] | Elbow | Assistive |
2020 | Lee et al. [69] | Knee | Assistive |
2020 | Samper-Escudero et al. [70] | Elbow Shoulder | Rehabilitative |
2020 | Gerez et al. [71] | Fingers | Rehabilitative |
2020 | Park et al. [72] | Hip Knee | Assistive |
2020 | Barazesh et al. [73] | Hip Knee | Assistive |
2019 | Zhao et al. [74] | Knee | Assistive |
2019 | Di Natali et al. [75] | Hip Knee | Assistive |
2019 | Wu et al. [76] | Elbow | Rehabilitative |
2019 | Yu et al. [77] | Knee | Assistive |
2019 | Yang et al. [78] | Trunk | Assistive |
2019 | Dwivedi et al. [79] | Fingers | Assistive |
2019 | Ismail et al. [80] | Fingers | Assistive |
2019 | Gerez et al. [81] | Fingers | Assistive |
2019 | Little et al. [82] | Elbow | Rehabilitative |
2019 | Liu et al. [83] | Fingers | Rehabilitative |
2019 | Kang et al. [84] | Fingers | Rehabilitative |
2019 | Yandell et al. [85] | Ankle | Assistive |
2019 | Gerez et al. [86] | Fingers | Assistive |
2019 | Michele et al. [87] | Elbow | Assistive |
2018 | Jin et al. [88] | Hip Ankle | Assistive |
2018 | Rose et al. [89] | Fingers Thumb | Assistive |
2018 | Kim et al. [90] | Elbow Shoulder | Assistive |
2018 | Graf et al. [91] | Hip Knee | Assistive |
2018 | Lessard et al. [92] | Wrist Elbow Shoulder | Rehabilitative |
2018 | Guo et al. [93] | Finger | Rehabilitative |
2018 | Poliero et al. [94] | Hip Knee | Assistive |
2018 | Wu et al. [95] | Elbow | Rehabilitative |
2017 | Schmidt et al. [96] | Hip Knee | Assistive |
2017 | Canesi et al. [97] | Elbow | Assistive |
2017 | Popov et al. [98] | Fingers | Assistive |
2017 | Biggar et al. [99] | Fingers | Rehabilitative |
2016 | Hussain et al. [100] | Supernumerary Limb | Assistive |
2016 | Panizzolo et al. [101] | Hip Ankle | Assistive |
2015 | Asbeck et al. [102] | Hip | Assistive |
2015 | Bae et al. [103] | Hip Ankle | Rehabilitative |
2015 | Asbeck et al. [38] | Hip Ankle | Assistive |
2015 | In et al. [104] | Fingers | Rehabilitative |
2014 | Ding et al. [105] | Hip Ankle | Assistive |
2013 | Asbeck et al. [106] | Hip Ankle | Assistive |
2012 | In and Cho [107] | Fingers | Rehabilitative |
3.2. Pneumatics
Year | Reference | Joint Movement | Function |
---|---|---|---|
2022 | Jackson et al. [109] | Hip | Assistive |
2022 | Nobaveh et al. [110] | Wrist | Rehabilitation |
2021 | Xiang et al. [111] | Fingers | Rehabilitative |
2021 | Yamanaka et al. [112] | Trunk | Assistive |
2021 | Kulasekera et al. [113] | Hip Knee | Rehabilitative |
2020 | Ang and Yeow [114] | Elbow | Assistive |
2020 | Takahashi et al. [115] | Fingers | Assistive |
2020 | Di Natali et al. [116] | Hip Knee Ankle | Assistive |
2020 | Ma et al. [117] | Fingers Wrist Elbow Shoulder | Assistive |
2020 | Sridar et al. [118] | Knee | Rehabilitative |
2020 | Gerez et al. [71] | Fingers Supernumerary Limb | Rehabilitative |
2020 | Fromme et al. [119] | Wrist | Assistive |
2020 | Wang et al. [120] | Fingers | Rehabilitative |
2020 | Zhang et al. [121] | Knee | Assistive |
2019 | Ang and Yeow [122] | Wrist | Rehabilitative |
2019 | Nguyen et al. [123] | Supernumerary Limb | Assistive |
2018 | Cappello et al. [124] | Fingers | Rehabilitative |
2018 | Al-Fahaam et al. [125] | Fingers | Assistive |
2017 | Ang and Yeow [126] | Fingers | Rehabilitative |
2017 | Kornkanok et al. [127] | Elbow | Rehabilitative |
2017 | Hassanin et al. [128] | Wrist | Rehabilitative |
2017 | Gobee et al. [129] | Wrist | Rehabilitative |
2017 | Ogawa et al. [130] | Hip Knee Ankle | Assistive |
2017 | Yap et al. [131] | Fingers | Rehabilitative |
2017 | Gobee et al. [132] | Fingers | Rehabilitative |
2017 | O’Neill et al. [133] | Shoulder | Assistive |
2017 | Yap et al. [134] | Fingers | Rehabilitative |
2017 | Yap et al. [135] | Fingers | Rehabilitative |
2017 | Yap et al. [136] | Fingers | Rehabilitative |
2013 | Sasaki et al. [137] | Knee | Assistive |
3.3. Others
3.3.1. Hydraulics
3.3.2. Shape Memory Alloys (SMA)
3.3.3. Polyvinyl Chloride (PVC) Artificial Muscle
4. Discussion
4.1. Intrinsic Factors
4.1.1. Design Challenges
4.1.2. Availability of Materials
4.1.3. Durability
4.1.4. Modeling and Control
4.1.5. Artificial Intelligence Augmentation
4.2. Extrinsic Factors
4.2.1. Standardized Evaluation Criteria
4.2.2. Public Perception
Improving Perceived Utility
Increasing Ease of Use
Improving Aesthetics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guler, S.D.; Gannon, M.; Sicchio, K. (Eds.) A Brief History of Wearables. In Crafting Wearables: Blending Technology with Fashion; Apress: Berkeley, CA, USA, 2016; pp. 3–10. [Google Scholar]
- Luczak, T.; Burch, R.; Lewis, E.; Chander, H.; Ball, J. State-of-the-art review of athletic wearable technology: What 113 strength and conditioning coaches and athletic trainers from the USA said about technology in sports. Int. J. Sport. Sci. Coach. 2020, 15, 26–40. [Google Scholar] [CrossRef]
- Ometov, A.; Shubina, V.; Klus, L.; Skibińska, J.; Saafi, S.; Pascacio, P.; Flueratoru, L.; Gaibor, D.Q.; Chukhno, N.; Chukhno, O.; et al. A Survey on Wearable Technology: History, State-of-the-Art and Current Challenges. Comput. Netw. 2021, 193, 108074. [Google Scholar] [CrossRef]
- Izmailova, E.S.; Wagner, J.A.; Perakslis, E.D. Wearable Devices in Clinical Trials: Hype and Hypothesis. Clin. Pharmacol. Ther. 2018, 104, 42–52. [Google Scholar] [CrossRef]
- Binkley, P.F. Predicting the potential of wearable technology. IEEE Eng. Med. Biol. Mag. 2003, 22, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.M.A.; Mahgoub, I.; Du, E.; Leavitt, M.A.; Asghar, W. Advances in healthcare wearable devices. NPJ Flex. Electron. 2021, 5, 9. [Google Scholar] [CrossRef]
- Dunn, J.; Runge, R.; Snyder, M. Wearables and the medical revolution. Pers. Med. 2018, 15, 429–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakrabarti, S.; Biswas, N.; Jones, L.D.; Kesari, S.; Ashili, S. Smart Consumer Wearables as Digital Diagnostic Tools: A Review. Diagnostics 2022, 12, 2110. [Google Scholar] [CrossRef]
- Cotter, G.; Moshkovitz, Y.; Kaluski, E.; Cohen, A.J.; Miller, H.; Goor, D.; Vered, Z. Accurate, noninvasive continuous monitoring of cardiac output by whole-body electrical bioimpedance. Chest 2004, 125, 1431–1440. [Google Scholar] [CrossRef] [Green Version]
- Muaremi, A.; Arnrich, B.; Tröster, G. Towards Measuring Stress with Smartphones and Wearable Devices during Workday and Sleep. BioNanoScience 2013, 3, 172–183. [Google Scholar] [CrossRef] [Green Version]
- Lavallière, M.; Burstein, A.A.; Arezes, P.; Coughlin, J.F. Tackling the challenges of an aging workforce with the use of wearable technologies and the quantified-self. Dyna 2016, 83, 38–43. [Google Scholar] [CrossRef]
- Zenonos, A.; Khan, A.; Kalogridis, G.; Vatsikas, S.; Lewis, T.; Sooriyabandara, M. HealthyOffice: Mood Recognition at Work Using Smartphones and Wearable Sensors. In Proceedings of the 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), Sydney, Australia, 14–18 March 2016. [Google Scholar]
- Malcolm, P.; Derave, W.; Galle, S.; De Clercq, D. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLoS ONE 2013, 8, e56137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratt, J.E.; Krupp, B.T.; Morse, C.J.; Collins, S.H. The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance during Walking. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004. [Google Scholar]
- Sankai, Y. HAL: Hybrid Assistive Limb Based on Cybernics. In Robotics Research. Springer Tracts in Advanced Robotics; Kaneko, M., Nakamura, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 66, pp. 25–34. [Google Scholar]
- Fontana, M.; Vertechy, R.; Marcheschi, S.; Salsedo, F.; Bergamasco, M. The Body Extender: A Full-Body Exoskeleton for the Transport and Handling of Heavy Loads. IEEE Robot. Autom. Mag. 2014, 21, 34–44. [Google Scholar] [CrossRef]
- Kazerooni, H.; Steger, R.; Huang, L. Hybrid Control of the Berkeley Lower Extremity Exoskeleton (BLEEX). Int. J. Robot. Res. 2006, 25, 561–573. [Google Scholar] [CrossRef]
- Hessinger, M.; Pingsmann, M.; Perry, J.C.; Werthschützky, R.; Kupnik, M. Hybrid Position/Force Control of an Upper-Limb Exoskeleton for Assisted Drilling. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017. [Google Scholar]
- Park, S.; Kim, S.; Sim, K.; Piao, J.; Han, R.; Kim, S.; Koo, S. Development of suits for upper-body movement-assistive wearable robots for industrial workers. Text. Res. J. 2022, 92, 3261–3276. [Google Scholar] [CrossRef]
- Rosen, J.; Brand, M.; Fuchs, M.B.; Arcan, M. A myosignal-based powered exoskeleton system. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 2001, 31, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Pinho, J.P.; Taira, C.; Parik-Americano, P.; Suplino, L.O.; Bartholomeu, V.P.; Hartmann, V.N.; Umemura, G.S.; Forner-Cordero, A. A Comparison between Three Commercially Available Exoskeletons in the Automotive Industry: An Electromyographic Pilot Study. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020. [Google Scholar]
- Mukherjee, B.; Dey, S.K.; Pradhan, B.B. The recent trends and inspections about powered exoskeletons. IOP Conf. Ser. Mater. Sci. Eng. 2018, 377, 012222. [Google Scholar] [CrossRef]
- Jia-Yong, Z.; Ye, L.I.U.; Xin-Min, M.O.; Chong-Wei, H.A.N.; Xiao-Jing, M.; Qiang, L.I.; Yue-Jin, W.; Ang, Z. A preliminary study of the military applications and future of individual exoskeletons. J. Phys. Conf. Ser. 2020, 1507, 102044. [Google Scholar] [CrossRef]
- Alici, G. Softer is Harder: What Differentiates Soft Robotics from Hard Robotics? MRS Adv. 2018, 3, 1557–1568. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Domel, A.G.; An, N.; Green, C.; Gong, Z.; Wang, T.; Knubben, E.M.; Weaver, J.C.; Bertoldi, K.; Wen, L. Octopus Arm-Inspired Tapered Soft Actuators with Suckers for Improved Grasping. Soft Robot. 2020, 7, 639–648. [Google Scholar] [CrossRef]
- Wehner, M.; Truby, R.L.; Fitzgerald, D.J.; Mosadegh, B.; Whitesides, G.M.; Lewis, J.A.; Wood, R.J. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 2016, 536, 451–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchese, A.D.; Onal, C.D.; Rus, D. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. Soft Robot. 2014, 1, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, S.C.; Scharff, R.B.N.; Rusák, Z.; Wu, J. OpenFish: Biomimetic design of a soft robotic fish for high speed locomotion. HardwareX 2022, 12, e00320. [Google Scholar] [CrossRef]
- Sun, Y.; Feng, H.; Liang, X.; Goh, A.J.Y.; Qi, P.; Li, M.; Ang Jr, M.H.; Yeow, R.C.H. Powerful 2D Soft Morphing Actuator Propels Giant Manta Ray Robot. Adv. Intell. Syst. 2022, 4, 2200186. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.; Cho, M.; Ahn, S.-H. Soft Tendril-Inspired Grippers: Shape Morphing of Programmable Polymer–Paper Bilayer Composites. ACS Appl. Mater. Interfaces 2018, 10, 10419–10427. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gupta, U.; Parulekar, N.; Zhu, J. A soft gripper of fast speed and low energy consumption. Sci. China Technol. Sci. 2019, 62, 31–38. [Google Scholar] [CrossRef]
- Seibel, A.; Yıldız, M.; Zorlubaş, A.B. A Gecko-Inspired Soft Passive Gripper. Biomimetics 2020, 5, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, H.; Li, X.; Shao, J.; Wang, C.; Wang, Y.; Tian, Y.; Liu, H. Gecko-Effect Inspired Soft Gripper with High and Switchable Adhesion for Rough Surfaces. Adv. Mater. Interfaces 2019, 6, 1900875. [Google Scholar] [CrossRef]
- Tian, H.; Liu, H.; Shao, J.; Li, S.; Li, X.; Chen, X. An electrically active gecko-effect soft gripper under a low voltage by mimicking gecko’s adhesive structures and toe muscles. Soft Matter 2020, 16, 5599–5608. [Google Scholar] [CrossRef]
- Kim, H.-I.; Han, M.-W.; Song, S.-H.; Ahn, S.-H. Soft morphing hand driven by SMA tendon wire. Compos. Part B Eng. 2016, 105, 138–148. [Google Scholar] [CrossRef]
- Deimel, R.; Brock, O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 2015, 35, 161–185. [Google Scholar] [CrossRef] [Green Version]
- Abdelhafiz, M.H.; Spaich, E.G.; Dosen, S.; Lotte, N.S.A. Bio-Inspired Tendon Driven Mechanism for Simultaneous Finger Joints Flexion Using a Soft Hand Exoskeleton. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019. [Google Scholar]
- Asbeck, A.T.; De Rossi, S.M.M.; Holt, K.G.; Walsh, C.J. A biologically inspired soft exosuit for walking assistance. Int. J. Robot. Res. 2015, 34, 744–762. [Google Scholar] [CrossRef]
- Li, H.; Yao, J.; Wei, C.; Zhou, P.; Xu, Y.; Zhao, Y. An untethered soft robotic gripper with high payload-to-weight ratio. Mech. Mach. Theory 2021, 158, 104226. [Google Scholar] [CrossRef]
- Li, S.; Stampfli, J.J.; Xu, H.J.; Malkin, E.; Diaz, E.V.; Rus, D.; Wood, R.J. A Vacuum-Driven Origami “Magic-Ball” Soft Gripper. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019. [Google Scholar]
- Su, Y.; Fang, Z.; Zhu, W.; Sun, X.; Zhu, Y.; Wang, H.; Tang, K.; Huang, H.; Liu, S.; Wang, Z. A High-Payload Proprioceptive Hybrid Robotic Gripper with Soft Origamic Actuators. IEEE Robot. Autom. Lett. 2020, 5, 3003–3010. [Google Scholar] [CrossRef]
- Kim, J.; Quinlivan, B.T.; Deprey, L.-A.; Arumukhom Revi, D.; Eckert-Erdheim, A.; Murphy, P.; Orzel, D.; Walsh, C.J. Reducing the energy cost of walking with low assistance levels through optimized hip flexion assistance from a soft exosuit. Sci. Rep. 2022, 12, 11004. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Lee, K.S.; Kim, Y.; Park, H.S. A Soft, Wearable Skin-Brace for Assisting Forearm Pronation and Supination with a Low-Profile Design. IEEE Robot. Autom. Lett. 2022, 7, 12078–12085. [Google Scholar] [CrossRef]
- Chen, W.; Li, G.; Li, N.; Wang, W.; Yu, P.; Wang, R.; Xue, X.; Zhao, X.; Liu, L. Soft Exoskeleton with Fully Actuated Thumb Movements for Grasping Assistance. IEEE Trans. Robot. 2022, 38, 2194–2207. [Google Scholar] [CrossRef]
- Otálora, S.; Ballen-Moreno, F.; Arciniegas-Mayag, L.; Múnera, M.; Cifuentes, C.A. The AGoRA V2 Unilateral Lower-Limb Exoskeleton: Mechatronic Integration and Biomechanical Assessment. IEEE Robot. Autom. Lett. 2022, 7, 7928–7933. [Google Scholar] [CrossRef]
- Yang, H.D.; Cooper, M.; Eckert-Erdheim, A.; Orzel, D.; Walsh, C.J. A Soft Exosuit Assisting Hip Abduction for Knee Adduction Moment Reduction During Walking. IEEE Robot. Autom. Lett. 2022, 7, 7439–7446. [Google Scholar] [CrossRef]
- Cao, W.; Ma, Y.; Chen, C.; Zhang, J.; Wu, X. Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 384–394. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, M.; Zhong, H.; Ji, X.; Xia, D.; Luo, X.; Yang, Y. Kinetic Walking Energy Harvester Design for a Wearable Bowden Cable-Actuated Exoskeleton Robot. Micromachines 2022, 13, 571. [Google Scholar] [CrossRef]
- Missiroli, F.; Lotti, N.; Tricomi, E.; Bokranz, C.; Alicea, R.; Xiloyannis, M.; Krzywinski, J.; Crea, S.; Vitiello, N.; Masia, L. Rigid, Soft, Passive, and Active: A Hybrid Occupational Exoskeleton for Bimanual Multijoint Assistance. IEEE Robot. Autom. Lett. 2022, 7, 2557–2564. [Google Scholar] [CrossRef]
- Samper-Escudero, J.L.; Coloma, S.; Olivares-Mendez, M.A.; González, S.U.; Ferre, M. A Compact and Portable Exoskeleton for Shoulder and Elbow Assistance for Workers and Prospective Use in Space. IEEE Trans. Hum.-Mach. Syst. 2022, 1–10. [Google Scholar] [CrossRef]
- Noronha, B.; Ng, C.Y.; Little, K.; Xiloyannis, M.; Kuah, C.W.K.; Wee, S.K.; Kulkarni, S.R.; Masia, L.; Chua, K.S.G.; Accoto, D. Soft, Lightweight Wearable Robots to Support the Upper Limb in Activities of Daily Living: A Feasibility Study on Chronic Stroke Patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1401–1411. [Google Scholar] [CrossRef]
- Ma, L.; Leng, Y.; Jiang, W.; Qian, Y.; Fu, C. Design an Underactuated Soft Exoskeleton to Sequentially Provide Knee Extension and Ankle Plantarflexion Assistance. IEEE Robot. Autom. Lett. 2022, 7, 271–278. [Google Scholar] [CrossRef]
- Firouzi, V.; Davoodi, A.; Bahrami, F.; Sharbafi, M.A. From a biological template model to gait assistance with an exosuit. Bioinspiration Biomim. 2021, 16, 066024. [Google Scholar] [CrossRef]
- Nazari, V.; Pouladian, M.; Zheng, Y.-P.; Alam, M. A Compact and Lightweight Rehabilitative Exoskeleton to Restore Grasping Functions for People with Hand Paralysis. Sensors 2021, 21, 6900. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ajoudani, A.; Tsagarakis, N.G. Exo-Muscle: A Semi-Rigid Assistive Device for the Knee. IEEE Robot. Autom. Lett. 2021, 6, 8514–8521. [Google Scholar] [CrossRef]
- Goršič, M.; Song, Y.; Dai, B.; Novak, D. Evaluation of the HeroWear Apex back-assist exosuit during multiple brief tasks. J. Biomech. 2021, 126, 110620. [Google Scholar] [CrossRef]
- Samper-Escudero, J.L.; Coloma, S.; Olivares-Mendez, M.A.; Sánchez-Urán, M.Á.; Ferre, M. Assessment of a Textile Portable Exoskeleton for the Upper Limbs’ Flexion. In Proceedings of the 2021 IEEE 2nd International Conference on Human-Machine Systems (ICHMS), Magdeburg, Germany, 8–10 September 2021. [Google Scholar]
- Ciullo, A.S.; Catalano, M.G.; Bicchi, A.; Ajoudani, A. A Supernumerary Soft Robotic Limb for Reducing Hand-Arm Vibration Syndromes Risks. Front. Robot. AI 2021, 8, 650613. [Google Scholar] [CrossRef]
- Bützer, T.; Lambercy, O.; Arata, J.; Gassert, R. Fully Wearable Actuated Soft Exoskeleton for Grasping Assistance in Everyday Activities. Soft Robot. 2021, 8, 128–143. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, C.; Lu, J.; Liu, Y.; Zhang, Y.; Wang, Z. A Novel Soft Exosuit Based on Biomechanical Analysis for Assisting Lower Extremity. In Proceedings of the 2020 IEEE International Conference on E-health Networking, Application & Services (HEALTHCOM), Shenzhen, China, 1–2 March 2021. [Google Scholar]
- Chiaradia, D.; Tiseni, L.; Xiloyannis, M.; Solazzi, M.; Masia, L.; Frisoli, A. An Assistive Soft Wrist Exosuit for Flexion Movements with an Ergonomic Reinforced Glove. Front. Robot. AI 2020, 7, 595862. [Google Scholar] [CrossRef] [PubMed]
- Fulton, P.V.; Löhlein, S.; Paredes-Acuña, N.; Berberich, N.; Cheng, G. Wrist Exoskeleton Design for Pronation and Supination using Mirrored Movement Control. In Proceedings of the 2021 20th International Conference on Advanced Robotics (ICAR), Ljubljana, Slovenia, 6–10 December 2021. [Google Scholar]
- Chen, L.; Chen, C.; Wang, Z.; Ye, X.; Liu, Y.; Wu, X. A Novel Lightweight Wearable Soft Exosuit for Reducing the Metabolic Rate and Muscle Fatigue. Biosensors 2021, 11, 215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Z.; Chen, C.; Fang, T.; Sun, R.; Li, Y. A Lightweight Soft Exoskeleton in Lower Limb Assistance. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020. [Google Scholar]
- Hennig, R.; Gantenbein, J.; Dittli, J.; Chen, H.; Lacour, S.P.; Lambercy, O.; Gassert, R. Development and Evaluation of a Sensor Glove to Detect Grasp Intention for a Wearable Robotic Hand Exoskeleton. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020. [Google Scholar]
- Xia, H.; Kwon, J.; Pathak, P.; Ahn, J.; Shull, P.B.; Park, Y.L. Design of A Multi-Functional Soft Ankle Exoskeleton for Foot-Drop Prevention, Propulsion Assistance, and Inversion/Eversion Stabilization. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020. [Google Scholar]
- Lee, H.D.; Park, H.; Seongho, B.; Kang, T.H. Development of a Soft Exosuit System for Walking Assistance during Stair Ascent and Descent. Int. J. Control. Autom. Syst. 2020, 18, 2678–2686. [Google Scholar] [CrossRef]
- Hosseini, M.; Meattini, R.; San-Millan, A.; Palli, G.; Melchiorri, C.; Paik, J. A sEMG-Driven Soft ExoSuit Based on Twisted String Actuators for Elbow Assistive Applications. IEEE Robot. Autom. Lett. 2020, 5, 4094–4101. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.H.; Park, H.S. A Fully Soft and Passive Assistive Device to Lower the Metabolic Cost of Sit-to-Stand. Front. Bioeng. Biotechnol. 2020, 8, 966. [Google Scholar] [CrossRef] [PubMed]
- Samper-Escudero, J.L.; Contreras-González, A.F.; Pont-Esteban, D.; Sáez-Sáez, F.J.; Sanchez-Urán, M.Á.; Ferre, M. Assessment of an Upper Limb Exosuit with Textile Coupling. In Proceedings of the 2020 IEEE International Conference on Human-Machine Systems (ICHMS), Rome, Italy, 7–9 September 2020. [Google Scholar]
- Gerez, L.; Dwivedi, A.; Liarokapis, M. A Hybrid, Soft Exoskeleton Glove Equipped with a Telescopic Extra Thumb and Abduction Capabilities. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020. [Google Scholar]
- Park, E.J.; Akbas, T.; Eckert-Erdheim, A.; Sloot, L.H.; Nuckols, R.W.; Orzel, D.; Schumm, L.; Ellis, T.D.; Awad, L.N.; Walsh, C.J. A Hinge-Free, Non-Restrictive, Lightweight Tethered Exosuit for Knee Extension Assistance During Walking. IEEE Trans. Med. Robot. Bionics 2020, 2, 165–175. [Google Scholar] [CrossRef]
- Barazesh, H.; Ahmad Sharbafi, M. A biarticular passive exosuit to support balance control can reduce metabolic cost of walking. Bioinspiration Biomim. 2020, 15, 036009. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, Y.; Gao, Y.; Zhang, Z.; Zheng, T.; Zhu, Y. Development of a Soft Knee Exosuit with Twisted String Actuators for Stair Climbing Assistance. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019. [Google Scholar]
- Di Natali, C.; Poliero, T.; Sposito, M.; Graf, E.; Bauer, C.; Pauli, C.; Bottenberg, E.; De Eyto, A.; O’Sullivan, L.; Hidalgo, A.F.; et al. Design and Evaluation of a Soft Assistive Lower Limb Exoskeleton. Robotica 2019, 37, 2014–2034. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Chen, B.; Wu, H. Neural-network-enhanced torque estimation control of a soft wearable exoskeleton for elbow assistance. Mechatronics 2019, 63, 102279. [Google Scholar] [CrossRef]
- Yu, S.; Huang, T.H.; Wang, D.; Lynn, B.; Sayd, D.; Silivanov, V.; Park, Y.S.; Tian, Y.; Su, H. Design and Control of a High-Torque and Highly Backdrivable Hybrid Soft Exoskeleton for Knee Injury Prevention during Squatting. IEEE Robot. Autom. Lett. 2019, 4, 4579–4586. [Google Scholar] [CrossRef]
- Yang, X.; Huang, T.H.; Hu, H.; Yu, S.; Zhang, S.; Zhou, X.; Carriero, A.; Yue, G.; Su, H. Spine-Inspired Continuum Soft Exoskeleton for Stoop Lifting Assistance. IEEE Robot. Autom. Lett. 2019, 4, 4547–4554. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, A.; Gerez, L.; Hasan, W.; Yang, C.H.; Liarokapis, M. A Soft Exoglove Equipped with a Wearable Muscle-Machine Interface Based on Forcemyography and Electromyography. IEEE Robot. Autom. Lett. 2019, 4, 3240–3246. [Google Scholar] [CrossRef]
- Ismail, R.; Ariyanto, M.; Hidayat, T.; Setiawan, J.D. Design of Fabric-Based Soft Robotic Glove for Hand Function Assistance. In Proceedings of the 2019 6th International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE), Semarang, Indonesia, 26–27 September 2019. [Google Scholar]
- Gerez, L.; Liarokapis, M. An Underactuated, Tendon-Driven, Wearable Exo-Glove with a Four-Output Differential Mechanism. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019. [Google Scholar]
- Little, K.; Antuvan, C.W.; Xiloyannis, M.; Bernardo, A.P.S.N.; Kim, Y.G.; Masia, L.; Accoto, D. IMU-Based Assistance Modulation in Upper Limb Soft Wearable Exosuits. In Proceedings of the 2019 IEEE International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019. [Google Scholar]
- Liu, Z.; Zhao, L.; Yu, P.; Yang, T.; Li, N.; Yang, Y.; Liu, L. A Wearable Bionic Soft Exoskeleton Glove for Stroke Patients. In Proceedings of the 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Tianjin, China, 19–23 July 2018. [Google Scholar]
- Kang, B.B.; Choi, H.; Lee, H.; Cho, K.-J. Exo-Glove Poly II: A Polymer-Based Soft Wearable Robot for the Hand with a Tendon-Driven Actuation System. Soft Robot. 2018, 6, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Yandell, M.B.; Tacca, J.R.; Zelik, K.E. Design of a Low Profile, Unpowered Ankle Exoskeleton That Fits Under Clothes: Overcoming Practical Barriers to Widespread Societal Adoption. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Gerez, L.; Chen, J.; Liarokapis, M. On the Development of Adaptive, Tendon-Driven, Wearable Exo-Gloves for Grasping Capabilities Enhancement. IEEE Robot. Autom. Lett. 2019, 4, 422–429. [Google Scholar] [CrossRef]
- Xiloyannis, M.; Annese, E.; Canesi, M.; Kodiyan, A.; Bicchi, A.; Micera, S.; Ajoudani, A.; Masia, L. Design and Validation of a Modular One-To-Many Actuator for a Soft Wearable Exosuit. Front. Neurorobotics 2019, 13, 39. [Google Scholar] [CrossRef]
- Jin, S.; Guo, S.; Hashimoto, K.; Xiong, X.; Yamamoto, M. A Soft Wearable Robotic Suit for Ankle and Hip Assistance: A Preliminary Study. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018. [Google Scholar]
- Rose, C.G.; O’Malley, M.K. Hybrid Rigid-Soft Hand Exoskeleton to Assist Functional Dexterity. IEEE Robot. Autom. Lett. 2019, 4, 73–80. [Google Scholar] [CrossRef]
- Kim, Y.G.; Xiloyannis, M.; Accoto, D.; Masia, L. Development of a Soft Exosuit for Industrial Applications. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018. [Google Scholar]
- Graf, E.S.; Bauer, C.M.; Power, V.; de Eyto, A.; Bottenberg, E.; Poliero, T.; Sposito, M.; Scherly, D.; Henke, R.; Pauli, C.; et al. Basic Functionality of a Prototype Wearable Assistive Soft Exoskeleton for People with Gait Impairments: A Case Study. In Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference, Corfu, Greece, 26–29 June 2018; pp. 202–207. [Google Scholar]
- Lessard, S.; Pansodtee, P.; Robbins, A.; Trombadore, J.M.; Kurniawan, S.; Teodorescu, M. A Soft Exosuit for Flexible Upper-Extremity Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1604–1617. [Google Scholar] [CrossRef]
- Guo, J.; Yu, S.; Li, Y.; Huang, T.H.; Wang, J.; Lynn, B.; Fidock, J.; Shen, C.L.; Edwards, D.; Su, H. A Soft Robotic Exo-Sheath Using Fabric EMG Sensing for Hand Rehabilitation and Assistance. In Proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 24–28 April 2018. [Google Scholar]
- Poliero, T.; Natali, C.D.; Sposito, M.; Ortiz, J.; Graf, E.; Pauli, C.; Bottenberg, E.; Eyto, A.D.; Caldwell, D.G. Soft Wearable Device for Lower Limb Assistance: Assessment of an Optimized Energy Efficient Actuation Prototype. In Proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 24–28 April 2018. [Google Scholar]
- Wu, Q.; Wang, X.; Chen, B.; Wu, H. Design and Fuzzy Sliding Mode Admittance Control of a Soft Wearable Exoskeleton for Elbow Rehabilitation. IEEE Access 2018, 6, 60249–60263. [Google Scholar] [CrossRef]
- Schmidt, K.; Duarte, J.E.; Grimmer, M.; Sancho-Puchades, A.; Wei, H.; Easthope, C.S.; Riener, R. The Myosuit: Bi-articular Anti-gravity Exosuit That Reduces Hip Extensor Activity in Sitting Transfers. Front. Neurorobotics 2017, 11, 57. [Google Scholar] [CrossRef] [Green Version]
- Canesi, M.; Xiloyannis, M.; Ajoudani, A.; Biechi, A.; Masia, L. Modular One-to-Many Clutchable Actuator for a Soft Elbow Exosuit. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017. [Google Scholar]
- Popov, D.; Gaponov, I.; Ryu, J.H. Portable Exoskeleton Glove with Soft Structure for Hand Assistance in Activities of Daily Living. IEEE/ASME Trans. Mechatron. 2017, 22, 865–875. [Google Scholar] [CrossRef]
- Biggar, S.; Yao, W. Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1071–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, I.; Salvietti, G.; Spagnoletti, G.; Prattichizzo, D. The Soft-SixthFinger: A Wearable EMG Controlled Robotic Extra-Finger for Grasp Compensation in Chronic Stroke Patients. IEEE Robot. Autom. Lett. 2016, 1, 1000–1006. [Google Scholar] [CrossRef] [Green Version]
- Panizzolo, F.A.; Galiana, I.; Asbeck, A.T.; Siviy, C.; Schmidt, K.; Holt, K.G.; Walsh, C.J. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. J. NeuroEngineering Rehabil. 2016, 13, 43. [Google Scholar] [CrossRef] [Green Version]
- Asbeck, A.T.; Schmidt, K.; Walsh, C.J. Soft exosuit for hip assistance. Robot. Auton. Syst. 2015, 73, 102–110. [Google Scholar] [CrossRef]
- Bae, J.; Rossi, S.M.M.D.; Donnell, K.O.; Hendron, K.L.; Awad, L.N.; Santos, T.R.T.D.; Araujo, V.L.D.; Ding, Y.; Holt, K.G.; Ellis, T.D.; et al. A Soft Exosuit for Patients with Stroke: Feasibility Study with a Mobile Off-Board Actuation Unit. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015. [Google Scholar]
- In, H.; Kang, B.B.; Sin, M.; Cho, K.J. Exo-Glove: A Wearable Robot for the Hand with a Soft Tendon Routing System. IEEE Robot. Autom. Mag. 2015, 22, 97–105. [Google Scholar] [CrossRef]
- Ding, Y.; Galiana, I.; Asbeck, A.; Quinlivan, B.; Rossi, S.M.M.D.; Walsh, C.J. Multi-Joint Actuation Platform for Lower Extremity Soft Exosuits. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014. [Google Scholar]
- Asbeck, A.T.; Dyer, R.J.; Larusson, A.F.; Walsh, C.J. Biologically-Inspired Soft Exosuit. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013. [Google Scholar]
- In, H.; Cho, K.J. Evaluation of the Antagonistic Tendon Driven System for SNU Exo-Glove. In Proceedings of the 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Daejeon, Republic of Korea, 26–28 November 2012. [Google Scholar]
- Pagoli, A.; Chapelle, F.; Corrales-Ramon, J.-A.; Mezouar, Y.; Lapusta, Y. Review of soft fluidic actuators: Classification and materials modeling analysis. Smart Mater. Struct. 2022, 31, 013001. [Google Scholar] [CrossRef]
- Miller-Jackson, T.M.; Natividad, R.F.; Lim, D.Y.L.; Hernandez-Barraza, L.; Ambrose, J.W.; Yeow, R.C.-H. A Wearable Soft Robotic Exoskeleton for Hip Flexion Rehabilitation. Front. Robot. AI 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Nobaveh, A.A.; Caasenbrood, B. Design Feasibility of an Energy-Efficient Wrist Flexion-Extension Exoskeleton using Compliant Beams and Soft Actuators. In Proceedings of the 2022 International Conference on Rehabilitation Robotics (ICORR), Rotterdam, The Netherlands, 25–29 July 2022. [Google Scholar]
- Shi, X.Q.; Heung, H.L.; Tang, Z.Q.; Li, Z.; Tong, K.Y. Effects of a Soft Robotic Hand for Hand Rehabilitation in Chronic Stroke Survivors. J. Stroke Cerebrovasc. Dis. 2021, 30, 105812. [Google Scholar] [CrossRef]
- Yamanaka, Y.; Kashima, M.; Arakawa, H.; Nishihama, R.; Yokoyama, K.; Nakamura, T. Verification of the “AB-Wear” Semi-Exoskeleton-Type Power-Assist Suit in Providing Assistance to the Lower Back. In Proceedings of the 2021 22nd IEEE International Conference on Industrial Technology (ICIT), Valencia, Spain, 10–12 March 2021. [Google Scholar]
- Kulasekera, A.L.; Arumathanthri, R.B.; Chathuranga, D.S.; Gopura, R.A.R.C.; Lalitharatne, T.D. A Low-Profile Vacuum Actuator (LPVAc) with Integrated Inductive Displacement Sensing for a Novel Sit-to-Stand Assist Exosuit. IEEE Access 2021, 9, 117067–117079. [Google Scholar] [CrossRef]
- Ang, B.W.K.; Yeow, C.H. Design and Modeling of a High Force Soft Actuator for Assisted Elbow Flexion. IEEE Robot. Autom. Lett. 2020, 5, 3731–3736. [Google Scholar] [CrossRef]
- Takahashi, N.; Furuya, S.; Koike, H. Soft Exoskeleton Glove with Human Anatomical Architecture: Production of Dexterous Finger Movements and Skillful Piano Performance. IEEE Trans. Haptics 2020, 13, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Di Natali, C.; Sadeghi, A.; Mondini, A.; Bottenberg, E.; Hartigan, B.; De Eyto, A.; O’Sullivan, L.; Rocon, E.; Stadler, K.; Mazzolai, B.; et al. Pneumatic Quasi-Passive Actuation for Soft Assistive Lower Limbs Exoskeleton. Front. Neurorobotics 2020, 14, 31. [Google Scholar] [CrossRef]
- Ma, J.; Chen, D.; Liu, Z.; Wang, M. A Soft Wearable Exoskeleton with Pneumatic Actuator for Assisting Upper Limb. In Proceedings of the 2020 IEEE International Conference on Real-Time Computing and Robotics (RCAR), Asahikawa, Japan, 28–29 September 2020. [Google Scholar]
- Sridar, S.; Qiao, Z.; Rascon, A.; Biemond, A.; Beltran, A.; Maruyama, T.; Kwasnica, C.; Polygerinos, P.; Zhang, W. Evaluating Immediate Benefits of Assisting Knee Extension with a Soft Inflatable Exosuit. IEEE Trans. Med. Robot. Bionics 2020, 2, 216–225. [Google Scholar] [CrossRef]
- Fromme, N.P.; Camenzind, M.; Riener, R.; Rossi, R.M. Design of a lightweight passive orthosis for tremor suppression. J. NeuroEngineering Rehabil. 2020, 17, 47. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Takahashi, N.; Koike, H. Sensor Glove Implemented with Artificial Muscle Set for Hand Rehabilitation. In Proceedings of the Augmented Humans International Conference Ahs’20, Kaiserslautern, Germany, 16–17 March 2020. [Google Scholar]
- Zhang, L.; Huang, Q.; Cai, K.; Wang, Z.; Wang, W.; Liu, J. A Wearable Soft Knee Exoskeleton Using Vacuum-Actuated Rotary Actuator. IEEE Access 2020, 8, 61311–61326. [Google Scholar] [CrossRef]
- Ang, B.W.K.; Yeow, C.H. Design and Characterization of a 3D Printed Soft Robotic Wrist Sleeve with 2 DoF for Stroke Rehabilitation. In Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Republic of Korea, 14–18 April 2019. [Google Scholar]
- Nguyen, P.H.; Sparks, C.; Nuthi, S.G.; Vale, N.M.; Polygerinos, P. Soft Poly-Limbs: Toward a New Paradigm of Mobile Manipulation for Daily Living Tasks. Soft Robot. 2018, 6, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Cappello, L.; Meyer, J.T.; Galloway, K.C.; Peisner, J.D.; Granberry, R.; Wagner, D.A.; Engelhardt, S.; Paganoni, S.; Walsh, C.J. Assisting hand function after spinal cord injury with a fabric-based soft robotic glove. J. NeuroEngineering Rehabil. 2018, 15, 59. [Google Scholar] [CrossRef]
- Al-Fahaam, H.; Davis, S.; Nefti-Meziani, S.; Theodoridis, T. Novel soft bending actuator-based power augmentation hand exoskeleton controlled by human intention. Intell. Serv. Robot. 2018, 11, 247–268. [Google Scholar] [CrossRef] [Green Version]
- Ang, B.W.K.; Yeow, C.H. Print-It-Yourself (PIY) Glove: A Fully 3D Printed Soft Robotic Hand Rehabilitative and Assistive Exoskeleton for Stroke Patients. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017. [Google Scholar]
- Tripanpitak, K.; Tarvainen, T.V.J.; Sönmezisik, I.; Wu, J.; Yu, W. Design a Soft Assistive Device for Elbow Movement Training in Peripheral Nerve Injuries. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017. [Google Scholar]
- Hassanin, A.F.; Steve, D.; Samia, N.M. A Novel, Soft, Bending Actuator for Use in Power Assist and Rehabilitation Exoskeletons. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017. [Google Scholar]
- Gobee, S.; Durairajah, V.; Mugilan, G. Design and Development of Upper Limb Soft Exoskeleton for Rehabilitation. In Proceedings of the 2nd International Conference for Innovation in Biomedical Engineering and Life Sciences, Penang, Malaysia, 10–13 December 2017. [Google Scholar]
- Ogawa, K.; Thakur, C.; Ikeda, T.; Tsuji, T.; Kurita, Y. Development of a pneumatic artificial muscle driven by low pressure and its application to the unplugged powered suit. Adv. Robot. 2017, 31, 1135–1143. [Google Scholar] [CrossRef]
- Yap, H.K.; Lim, J.H.; Nasrallah, F.; Yeow, C.-H. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors. Front. Neurosci. 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Gobee, S.; Durairajah, V.; Mohammadullah, N. Portable Soft-Exoskeleton for Finger Rehabilitation. Icbeb 2017, 2017, 65–70. [Google Scholar]
- Neill, C.T.O.; Phipps, N.S.; Cappello, L.; Paganoni, S.; Walsh, C.J. A Soft Wearable Robot for the Shoulder: Design, Characterization, and Preliminary Testing. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017. [Google Scholar]
- Yap, H.K.; Khin, P.M.; Koh, T.H.; Sun, Y.; Liang, X.; Lim, J.H.; Yeow, C.H. A Fully Fabric-Based Bidirectional Soft Robotic Glove for Assistance and Rehabilitation of Hand Impaired Patients. IEEE Robot. Autom. Lett. 2017, 2, 1383–1390. [Google Scholar] [CrossRef]
- Yap, H.K.; Kamaldin, N.; Lim, J.H.; Nasrallah, F.A.; Goh, J.C.H.; Yeow, C.H. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Yap, H.K.; Jeong Hoon, L.; Nasrallah, F.; Goh, J.C.H.; Yeow, R.C.H. A Soft Exoskeleton for Hand Assistive and Rehabilitation Application Using Pneumatic Actuators with Variable Stiffness. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015. [Google Scholar]
- Sasaki, D.; Noritsugu, T.; Takaiwa, M. Development of Pneumatic Lower Limb Power Assist Wear Driven with Wearable Air Supply System. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013. [Google Scholar]
- Chen, Y.; Tan, X.; Yan, D.; Zhang, Z.; Gong, Y. A Composite Fabric-Based Soft Rehabilitation Glove with Soft Joint for Dementia in Parkinson’s Disease. IEEE J. Transl. Eng. Health Med. 2020, 8, 1400110. [Google Scholar] [CrossRef] [PubMed]
- Polygerinos, P.; Wang, Z.; Galloway, K.C.; Wood, R.J.; Walsh, C.J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 2015, 73, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Sy, L.; Hoang, T.T.; Bussu, M.; Thai, M.T.; Phan, P.T.; Low, H.; Tsai, D.; Brodie, M.A.; Lovell, N.H.; Do, T.N. M-SAM: Miniature and Soft Artificial Muscle-Driven Wearable Robotic Fabric Exosuit for Upper Limb Augmentation. In Proceedings of the 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 12–16 April 2021. [Google Scholar]
- Kim, C.; Kim, G.; Lee, Y.; Lee, G.; Han, S.; Kang, D.; Koo, S.H.; Koh, J.-S. Shape memory alloy actuator-embedded smart clothes for ankle assistance. Smart Mater. Struct. 2020, 29, 055003. [Google Scholar] [CrossRef]
- Copaci, D.; Cano, E.; Moreno, L.; Blanco, D. New Design of a Soft Robotics Wearable Elbow Exoskeleton Based on Shape Memory Alloy Wire Actuators. Appl. Bionics Biomech. 2017, 2017, 1605101. [Google Scholar] [CrossRef] [Green Version]
- Villoslada, A.; Flores, A.; Copaci, D.; Blanco, D.; Moreno, L. High-displacement flexible Shape Memory Alloy actuator for soft wearable robots. Robot. Auton. Syst. 2015, 73, 91–101. [Google Scholar] [CrossRef]
- Uddin, M.Z.; Watanabe, M.; Shirai, H.; Hirai, T. Effects of plasticizers on novel electromechanical actuations with different poly(vinyl chloride) gels. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 2119–2127. [Google Scholar] [CrossRef]
- Li, Y.; Hashimoto, M. PVC gel soft actuator-based wearable assist wear for hip joint support during walking. Smart Mater. Struct. 2017, 26, 125003. [Google Scholar] [CrossRef]
- Amend, J.; Cheng, N.; Fakhouri, S.; Culley, B. Soft Robotics Commercialization: Jamming Grippers from Research to Product. Soft Robot. 2016, 3, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Jeong, U.; Kim, K.; Kim, S.-H.; Choi, H.; Youn, B.D.; Cho, K.-J. Reliability analysis of a tendon-driven actuation for soft robots. Int. J. Robot. Res. 2020, 40, 494–511. [Google Scholar] [CrossRef]
- Yap, H.K.; Ng, H.Y.; Yeow, C.-H. High-Force Soft Printable Pneumatics for Soft Robotic Applications. Soft Robot. 2016, 3, 144–158. [Google Scholar] [CrossRef]
- Wang, Z.; Torigoe, Y.; Hirai, S. A Prestressed Soft Gripper: Design, Modeling, Fabrication, and Tests for Food Handling. IEEE Robot. Autom. Lett. 2017, 2, 1909–1916. [Google Scholar] [CrossRef]
- Hashemi, Y.M.; Kadkhodaei, M.; Mohammadzadeh, M.R. Fatigue analysis of shape memory alloy helical springs. Int. J. Mech. Sci. 2019, 161–162, 105059. [Google Scholar] [CrossRef]
- Karhu, M.; Lindroos, T. Long-term behaviour of binary Ti–49.7Ni (at.%) SMA actuators—The fatigue lives and evolution of strains on thermal cycling. Smart Mater. Struct. 2010, 19, 115019. [Google Scholar] [CrossRef]
- Miron, G.; Plante, J.-S. Design Principles for Improved Fatigue Life of High-Strain Pneumatic Artificial Muscles. Soft Robot. 2016, 3, 177–185. [Google Scholar] [CrossRef]
- Wang, H.; Totaro, M.; Beccai, L. Toward Perceptive Soft Robots: Progress and Challenges. Adv. Sci. 2018, 5, 1800541. [Google Scholar] [CrossRef]
- Ang, B.W.K.; Yeow, C.-H. A Learning-Based Approach to Sensorize Soft Robots. Soft Robot. 2022, 9, 1144–1153. [Google Scholar] [CrossRef]
- Zelik, K.E.; Nurse, C.A.; Schall, M.C., Jr.; Sesek, R.F.; Marino, M.C.; Gallagher, S. An ergonomic assessment tool for evaluating the effect of back exoskeletons on injury risk. Appl. Ergon. 2022, 99, 103619. [Google Scholar] [CrossRef] [PubMed]
- Van Ommeren, A.; Radder, B.; Kottink, A.; Buurke, J.; Prange-Lasonder, G.; Rietman, J. Quantifying upper extremity performance with and without assistance of a soft-robotic glove in elderly patients: A kinematic analysis. J. Rehabil. Med. 2019, 51, 298–306. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.; Holloway, C.S.; Morgado Ramirez, D.Z.; Smitham, P.; Pappas, Y. What Are User Perspectives of Exoskeleton Technology? A LITERATURE REVIEW. Int. J. Technol. Assess. Health Care 2017, 33, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Kelley, P.G.; Yang, Y.; Heldreth, C.; Moessner, C.; Sedley, A.; Kramm, A.; Newman, D.T.; Woodruff, A. Exciting, Useful, Worrying, Futuristic: Public Perception of Artificial Intelligence in 8 Countries. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (AIES’21), Virtual Event, USA, 19–21 May 2021. [Google Scholar]
- Langard, M.; Aoustin, Y.; Arakelian, V.; Chablat, D. Investigation of the Stresses Exerted by an Exosuit of a Human Arm, Advanced Technologies in Robotics and Intelligent Systems; Misyurin, S.Y., Arakelian, V., Avetisyan, A.I., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 425–435. [Google Scholar]
- Yandell, M.B.; Quinlivan, B.T.; Popov, D.; Walsh, C.; Zelik, K.E. Physical interface dynamics alter how robotic exosuits augment human movement: Implications for optimizing wearable assistive devices. J. NeuroEngineering Rehabil. 2017, 14, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foo, E.; Woelfle, H.; Holschuh, B. Design Tradeoffs in the Development of a Wearable Soft Exoskeleton for Upper Limb Mobility Disorders. In Proceedings of the 2019 Design of Medical Devices Conference, Minneapolis, MN, USA, 16–18 April 2019. [Google Scholar]
- Kim, S.J.; Chang, H.; Park, J.; Kim, J. Design of a Portable Pneumatic Power Source with High Output Pressure for Wearable Robotic Applications. IEEE Robot. Autom. Lett. 2018, 3, 4351–4358. [Google Scholar] [CrossRef]
- Bearden, W.O.; Netemeyer, R.G.; Teel, J.E. Measurement of Consumer Susceptibility to Interpersonal Influence. J. Consum. Res. 1989, 15, 473–481. [Google Scholar] [CrossRef]
- Kiesler, S.; Hinds, P. Introduction to This Special Issue on Human-Robot Interaction. Hum.–Comput. Interact. 2004, 19, 1–8. [Google Scholar]
- Koo, S.H. Design factors and preferences in wearable soft robots for movement disabilities. Int. J. Cloth. Sci. Technol. 2018, 30, 477–495. [Google Scholar] [CrossRef]
- Louise-Bender, P.T.; Kim, J.; Weiner, B. The shaping of individual meanings assigned to assistive technology: A review of personal factors. Disabil. Rehabil. 2002, 24, 5–20. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ang, B.W.K.; Yeow, C.-H.; Lim, J.H. A Critical Review on Factors Affecting the User Adoption of Wearable and Soft Robotics. Sensors 2023, 23, 3263. https://doi.org/10.3390/s23063263
Ang BWK, Yeow C-H, Lim JH. A Critical Review on Factors Affecting the User Adoption of Wearable and Soft Robotics. Sensors. 2023; 23(6):3263. https://doi.org/10.3390/s23063263
Chicago/Turabian StyleAng, Benjamin Wee Keong, Chen-Hua Yeow, and Jeong Hoon Lim. 2023. "A Critical Review on Factors Affecting the User Adoption of Wearable and Soft Robotics" Sensors 23, no. 6: 3263. https://doi.org/10.3390/s23063263
APA StyleAng, B. W. K., Yeow, C. -H., & Lim, J. H. (2023). A Critical Review on Factors Affecting the User Adoption of Wearable and Soft Robotics. Sensors, 23(6), 3263. https://doi.org/10.3390/s23063263