An Event-Classification Neural Network Approach for Rapid Railroad Bridge Impact Detection
Abstract
:1. Introduction
2. Challenges of Using Wireless Monitoring Systems for Impact Detection
3. Rapid Impact Identification Strategy
3.1. Event Description
3.2. Proposed Event Classification Algorithm Approach
3.3. Neural Network Classifier
3.3.1. Neural Network Architecture
3.3.2. Feature Extraction
3.3.3. Training and Testing Approach
4. Results and Discussion
4.1. Neural Network Classifier Results
4.2. Discussion
4.2.1. Edge Classification Framework
4.2.2. Implementation on Edge Device
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agrawal, A.K.; Xu, X.; Chen, Z. Bridge Vehicle Impact Assessment (Project # C-07-10); Final Report for New York State Department of Transportation; University Transportation Research Center: New York, NY, USA, 2011. [Google Scholar]
- FAU. New Way to Assess Safety of Aging Timber Railroad Bridges. Available online: https://www.fau.edu/newsdesk/articles/timber-bridge.php (accessed on 16 July 2022).
- Norfolk Southern–Gregson Street Overpass—Wikipedia. Available online: https://en.wikipedia.org/wiki/Norfolk_Southern%E2%80%93Gregson_Street_Overpass (accessed on 16 July 2022).
- Joy, R.; Jones, M.; Otter, D.; Maal, L. Characterization of Railroad Bridge Service Interruptions; U.S. Department of Transportation: Washington, DC, USA, 2013.
- Nguyen, B.; Brilakis, I. Understanding the Problem of Bridge and Tunnel Strikes Caused by Over-Height Vehicles. Transp. Res. Procedia 2016, 14, 3915–3924. [Google Scholar] [CrossRef] [Green Version]
- Network Rail. Response to a Bridge Strike at a Bridge Carrying the Railway over a Road a Protocol for Highway and Road Managers, Emergency Services and Bridge Owners; Network Rail: London, UK, 2009. [Google Scholar]
- Tabian, I.; Fu, H.; Khodaei, Z.S. A Convolutional Neural Network for Impact Detection and Characterization of Complex Composite Structures. Sensors 2019, 19, 4933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, H.; Sharif Khodaei, Z.; Aliabadi, M.H.F. An Event-Triggered Energy-Efficient Wireless Structural Health Monitoring System for Impact Detection in Composite Airframes. IEEE Internet Things J. 2019, 6, 1183–1192. [Google Scholar] [CrossRef]
- Frieden, J.; Cugnoni, J.; Botsis, J.; Gmür, T. Low Energy Impact Damage Monitoring of Composites Using Dynamic Strain Signals from FBG Sensors—Part I: Impact Detection and Localization. Compos. Struct. 2012, 94, 438–445. [Google Scholar] [CrossRef]
- Gomez, J.; Jorge, I.; Durana, G.; Arrue, J.; Zubia, J.; Aranguren, G.; Montero, A.; López, I. Proof of Concept of Impact Detection in Composites Using Fiber Bragg Grating Arrays. Sensors 2013, 13, 11998–12011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramovitch, H.; Burgard, M.; Edery-Azulay, L.; Evans, K.E.; Hoffmeister, M.; Miller, W.; Scarpa, F.; Smith, C.W.; Tee, K.F. Smart Tetrachiral and Hexachiral Honeycomb: Sensing and Impact Detection. Compos. Sci. Technol. 2010, 70, 1072–1079. [Google Scholar] [CrossRef]
- Song, G.; Olmi, C.; Gu, H. An Overheight Vehicle-Bridge Collision Monitoring System Using Piezoelectric Transducers. Smart Mater. Struct. 2007, 16, 462–468. [Google Scholar] [CrossRef]
- Byrne, A. Railway Bridges in Ireland & Bridge Strike Trends; Railway Safety Commission: Dublin, Ireland, 2009.
- Yang, M. An Integrated Real-Time Health Monitoring and Impact/Collision Detection System for Bridges in Cold Remote Regions; A Final Report for Mountain-Plains Consortium; Mountain Plains Consortium: Fargo, ND, USA, 2015. [Google Scholar]
- Sun, Z.; Zou, Z.; Zhang, Y. Utilization of Structural Health Monitoring in Long-Span Bridges: Case Studies. Struct. Control Health Monit. 2017, 24, e1979. [Google Scholar] [CrossRef]
- Fu, Y.; Zhu, Y.; Hoang, T.; Mechitov, K.; Spencer, B.F. xImpact: Intelligent Wireless System for Cost-Effective Rapid Condition Assessment of Bridges under Impacts. Sensors 2022, 22, 5701. [Google Scholar] [CrossRef]
- Eltobgy, H.H.; Abdel, A.; Khalil, M.; Darwish, E.E.; Saber, M. Response of Railway Steel Bridges to Rail and Wheel Defects. Int. J. Sci. Eng. Res. 2021, 12, 858–872. [Google Scholar]
- Sitton, J.D.; Story, B.A.; Zeinali, Y. Bridge Impact Detection and Classification Using Artificial Neural Networks Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance. In Proceedings of the 11th International Workshop on Structural Health Monitoring, IWSHM 2017, Stanford, CA, USA, 12–14 September 2017; Volume 1, pp. 1261–1267. [Google Scholar] [CrossRef]
- Sitton, J.D.; Zeinali, Y.; Story, B.A. Design and Field Implementation of an Impact Detection System Using Committees of Neural Networks. Expert Syst. Appl. 2019, 120, 185–196. [Google Scholar] [CrossRef]
- When You Shouldn’t Use Ensemble Learning|Deepchecks. Available online: https://deepchecks.com/when-you-shouldnt-use-ensemble-learning/ (accessed on 8 November 2022).
- Predictive Model Ensembles: Pros and Cons—Perficient Blogs. Available online: https://blogs.perficient.com/2019/11/07/predictive-model-ensembles-pros-and-cons/ (accessed on 8 November 2022).
- Ozdagli, A.I.; Moreu, F.; Xu, D.; Wang, T. Experimental Analysis on Effectiveness of Crash Beams for Impact Attenuation of Overheight Vehicle Collisions on Railroad Bridges. J. Bridge Eng. 2020, 25, 04019133. [Google Scholar] [CrossRef]
- Xu, D.; Yuan, X.; Ozdagli, A.I.; Agüero, M.; Nasimi, R.; Wang, T.; Moreu, F. Over-Height Truck Collisions with Railway Bridges: Attenuation of Damage Using Crash Beams. Earthq. Eng. Eng. Vib. 2022, 21, 237–252. [Google Scholar] [CrossRef]
- What Is Edge Computing? Everything You Need to Know. Available online: https://www.techtarget.com/searchdatacenter/definition/edge-computing (accessed on 9 August 2022).
- Estrin, D.; Girod, L.; Pottie, G.; Srivastava, M. Instrumenting the World with Wireless Sensor Networks. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Salt Lake City, UT, USA, 7–11 May 2001; Volume 4, pp. 2033–2036. [Google Scholar]
- Guo, W.; Liu, Z.; Wu, G. An Energy-Balanced Transmission Scheme for Sensor Networks. In Proceedings of the SenSys ’03: 1st International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA, 5–7 November 2003; pp. 300–301. [Google Scholar]
- Rajendran, V.; Obraczka, K.; Garcia-Luna-Aceves, J.J. Energy-Efficient, Collision-Free Medium Access Control for Wireless Sensor Networks. In Proceedings of the SenSys ’03: 1st International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA, 5–7 November 2003; pp. 181–192. [Google Scholar]
- Ye, W.; Heidemann, J.; Estrin, D. An Energy-Efficient MAC Protocol for Wireless Sensor Networks. In Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies, New York, NY, USA, 23–27 June 2002; Volume 3, pp. 1567–1576. [Google Scholar]
- Kulik, J.; Heinzelman, W.; Balakrishnan, H. Negotiation-Based Protocols for Disseminating Information in Wireless Sensor Networks. Wirel. Netw. 2002, 8, 169–185. [Google Scholar] [CrossRef]
- Intanagonwiwat, C.; Govindan, R.; Estrin, D.; Heidemann, J.; Silva, F. Directed Diffusion for Wireless Sensor Networking. IEEE/ACM Trans. Netw. 2003, 11, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Hoang, T.; Mechitov, K.; Kim, J.R.; Zhang, D.; Spencer, B.F. Sudden Event Monitoring of Civil Infrastructure Using Demand-Based Wireless Smart Sensors. Sensors 2018, 18, 4480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Mechitov, K.; Hoang, T.; Kim, J.R.; Memon, S.A.; Spencer, B.F. Efficient and High-Precision Time Synchronization for Wireless Monitoring of Civil Infrastructure Subjected to Sudden Events. Struct. Control Health Monit. 2021, 28, e2643. [Google Scholar] [CrossRef]
- Fu, Y.; Mechitov, K.; Hoang, T.; Kim, J.R.; Lee, D.H.; Spencer, B.F. Development and Full-Scale Validation of High-Fidelity Data Acquisition on a next-Generation Wireless Smart Sensor Platform. Adv. Struct. Eng. 2019, 22, 3512–3533. [Google Scholar] [CrossRef]
- Shajihan, S.A.V.; Chow, R.; Mechitov, K.; Fu, Y.; Hoang, T.; Spencer, B.F. Development of Synchronized High-Sensitivity Wireless Accelerometer for Structural Health Monitoring. Sensors 2020, 20, 4169. [Google Scholar] [CrossRef] [PubMed]
- Spencer, B.F.; Park, J.W.; Mechitov, K.A.; Jo, H.; Agha, G. Next Generation Wireless Smart Sensors Toward Sustainable Civil Infrastructure. Procedia Eng. 2017, 171, 5–13. [Google Scholar] [CrossRef]
- Fu, Y. Sudden-Event Monitoring of Civil Infrastructure Using Wireless Smart Sensors. Ph.D. Thesis, University of Illinois Urbana-Champaign, Champaign, IL, USA, 2019. [Google Scholar]
- Mocnej, J.; Miškuf, M.; Papcun, P.; Zolotová, I. Impact of Edge Computing Paradigm on Energy Consumption in IoT. IFAC PapersOnLine 2018, 51, 162–167. [Google Scholar] [CrossRef]
- Guo, X.; Yin, Y.; Dong, C.; Yang, G.; Zhou, G. On the Class Imbalance Problem. In Proceedings of the 4th International Conference on Natural Computation, ICNC 2008, Jinan, China, 18–20 October 2008; Volume 4, pp. 192–201. [Google Scholar]
- Björklund, L. Dynamic Analysis of a Railway Bridge Subjected to High Speed Trains. Master’s Thesis, Royal Institute of Technology, Stockholm, Sweden, 2004. [Google Scholar]
- A Gentle Introduction to the Rectified Linear Unit (ReLU). Available online: https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/ (accessed on 2 August 2022).
- A Gentle Introduction to Sigmoid Function. Available online: https://machinelearningmastery.com/a-gentle-introduction-to-sigmoid-function/ (accessed on 2 August 2022).
- Sklearn.Preprocessing.StandardScaler—Scikit-Learn 1.1.1 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html (accessed on 26 July 2022).
- Raja, M.N.A.; Shukla, S.K. Predicting the Settlement of Geosynthetic-Reinforced Soil Foundations Using Evolutionary Artificial Intelligence Technique. Geotext. Geomembr. 2021, 49, 1280–1293. [Google Scholar] [CrossRef]
- Amjad Raja, M.N.; Abbas Jaffar, S.T.; Bardhan, A.; Shukla, S.K. Predicting and Validating the Load-Settlement Behavior of Large-Scale Geosynthetic-Reinforced Soil Abutments Using Hybrid Intelligent Modeling. J. Rock Mech. Geotech. Eng. 2022, 15, 773–788. [Google Scholar] [CrossRef]
- Keras API Reference. Available online: https://keras.io/api/ (accessed on 26 July 2022).
- A Gentle Introduction to K-Fold Cross-Validation. Available online: https://machinelearningmastery.com/k-fold-cross-validation/ (accessed on 30 July 2022).
- Chen, J.; Ran, X. Deep Learning with Edge Computing: A Review. Proc. IEEE 2019, 107, 1655–1674. [Google Scholar] [CrossRef]
- Shajihan, S.A.V.; Hoang, T.; Mechitov, K.; Spencer, B.F. Wireless SmartVision System for Synchronized Displacement Monitoring of Railroad Bridges. Comput.-Aided Civ. Infrastruct. Eng. 2022, 37, 1070–1088. [Google Scholar] [CrossRef]
- What Is a Raspberry Pi? Available online: https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/ (accessed on 8 December 2022).
- Raspberry Pi OS—Raspberry Pi. Available online: https://www.raspberrypi.com/software/ (accessed on 8 December 2022).
- Raspberry Pi 3. Available online: https://www.alliedelec.com/m/d/4252b1ecd92888dbb9d8a39b536e7bf2.pdf (accessed on 8 December 2022).
- TensorFlow Lite. Available online: https://www.tensorflow.org/lite/guide#2_convert_the_model (accessed on 8 December 2022).
Feature | ADXL362 (Low-Fidelity) | LIS344ALH (High-Fidelity) |
---|---|---|
Maximum absolute acceleration | yes | yes |
Dominant frequencies from FFT | no | yes |
Center of mass | yes | no |
Spectral energy | no | yes |
Parameter | Value |
---|---|
Loss function | Binary cross-entropy |
Learning rate | 0.001 |
Optimizer | Adam |
No. of epochs | 200 |
Metric | Score |
---|---|
Mean accuracy | 0.9867 |
ROC AUC | 0.9900 |
F1 | 0.9793 |
Standard deviation | 0.0267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawal, O.; V. Shajihan, S.A.; Mechitov, K.; Spencer, B.F., Jr. An Event-Classification Neural Network Approach for Rapid Railroad Bridge Impact Detection. Sensors 2023, 23, 3330. https://doi.org/10.3390/s23063330
Lawal O, V. Shajihan SA, Mechitov K, Spencer BF Jr. An Event-Classification Neural Network Approach for Rapid Railroad Bridge Impact Detection. Sensors. 2023; 23(6):3330. https://doi.org/10.3390/s23063330
Chicago/Turabian StyleLawal, Omobolaji, Shaik Althaf V. Shajihan, Kirill Mechitov, and Billie F. Spencer, Jr. 2023. "An Event-Classification Neural Network Approach for Rapid Railroad Bridge Impact Detection" Sensors 23, no. 6: 3330. https://doi.org/10.3390/s23063330
APA StyleLawal, O., V. Shajihan, S. A., Mechitov, K., & Spencer, B. F., Jr. (2023). An Event-Classification Neural Network Approach for Rapid Railroad Bridge Impact Detection. Sensors, 23(6), 3330. https://doi.org/10.3390/s23063330