Accurate Calibration of a Large Field of View Camera with Coplanar Constraint for Large-Scale Specular Three-Dimensional Profile Measurement
Abstract
:1. Introduction
2. Geometry of Camera Pose Estimation
2.1. Plane Mirror Reflection Model
2.2. Mirror-Based Camera Projection Model
2.3. Computation of External Parameters
2.4. Optimization with Coplanar Constraint
2.5. Three-Dimensional Measurement Principle of a Single Camera
3. Experimental Verification
3.1. Calibration Experiment
3.2. Measurement of the Step Surface
3.3. Measurement of the Spherical Mirror
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morandi, P.; Brémand, F.; Doumalin, P.; Germaneau, A.; Dupré, J. New Optical Scanning Tomography using a rotating slicing for time-resolved measurements of 3D full field displacements in structures. Opt. Lasers Eng. 2014, 58, 85–92. [Google Scholar] [CrossRef]
- Yu, L.; Pan, B. High-speed stereo-digital image correlation using a single color high-speed camera. Appl. Opt. 2018, 57, 31. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xi, N.; Zhang, C.; Shi, Q. Windshield shape inspection using structured light patterns from two diffuse planar light sources. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 11–15. [Google Scholar] [CrossRef]
- Balzer, J.; Hfer, S.; Beyerer, J. Multiview specular stereo reconstruction of large mirror surfaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 2537–2544. [Google Scholar]
- Zuo, C.; Feng, S.; Huang, L.; Tao, T.; Yin, W.; Chen, Q. Phase shifting algorithms for fringe projection profilometry: A review. Opt. Lasers Eng. 2018, 109, 23–59. [Google Scholar] [CrossRef]
- Song, Z. High-speed 3D shape measurement with structured light methods: A review. Opt. Lasers Eng. 2018, 106, 119–131. [Google Scholar]
- Liu, Y.; Fu, Y.; Cai, X.; Zhong, K.; Guan, B. A novel high dynamic range 3D measurement method based on adaptive fringe projection technique—ScienceDirect. Opt. Lasers Eng. 2020, 128, 106004. [Google Scholar] [CrossRef]
- Shengpeng, F.U. Imaging Simulation Method for Specular Surface Measurement. J. Mech. Eng. 2015, 51, 17–24. [Google Scholar]
- Halstead, M.A.; Barsky, B.A.; Klein, S.A.; Mandell, R.B. Reconstructing curved surfaces from specular reflection patterns using spline surface fitting of normals. In Proceedings of the Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 1 August 1996. [Google Scholar]
- Tarini, M.; Lensch, H.P.; Goesele, M.; Seidel, H.-P. 3D acquisition of mirroring objects using striped patterns. Graph. Model. 2005, 67, 233–259. [Google Scholar] [CrossRef] [Green Version]
- Savarese, S.; Chen, M.; Perona, P. Local Shape from Mirror Reflections. Int. J. Comput. Vis. 2005, 64, 31–67. [Google Scholar] [CrossRef]
- Liu, M.; Hartley, R.; Salzmann, M. Mirror Surface Reconstruction from a Single Image. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Sturm, P.; Bonfort, T. How to Compute the Pose of an Object without a Direct View? Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Kumar, R.K.; Ilie, A.; Frahm, J.M.; Pollefeys, M. Simple calibration of non-overlapping cameras with a mirror. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–7. [Google Scholar]
- Takahashi, K.; Nobuhara, S.; Matsuyama, T. Mirror-based Camera Pose Estimation Using an Orthogonality Constraint. IPSJ Trans. Comput. Vis. Appl. 2016, 8, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Hesch, J.A.; Mourikis, A.I.; Roumeliotis, S.I. Mirror-Based Extrinsic Camera Calibration, Algorithmic Foundation of Robotics VIII. Springer Tracts Adv. Robot. 2009, 57, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Long, G.; Guo, P.; Liu, J.; Zhang, X.; Yu, Q. Accurate mirror-based camera pose estimation with explicit geometric meanings. Sci. China Technol. Sci. 2014, 57, 2504–2513. [Google Scholar] [CrossRef]
- Bergamasco, F.; Cosmo, L.; Albarelli, A.; Torsello, A. Camera Calibration from Coplanar Circles. In Proceedings of the International Conference on Pattern Recognition IEEE Computer Society, Stockholm, Sweden, 6 December 2014; pp. 2137–2142. [Google Scholar]
- Li, W.; Chu, J.; Meng, H.; Wang, J.; Li, X.; Xing, X. Calibration method with separation patterns of a single-camera. Proc. SPIE 2006, 6269, 303–304. [Google Scholar]
- Yang, N.; Huo, J.; Yang, M.; Wang, W.X. A calibration method of camera with large field-of-view based on spliced small targets. Guangdianzi Jiguang/J. Optoelectron. Laser 2013, 24, 1569–1575. [Google Scholar]
- Sun, J.; Liu, Z.; Zhang, G. Camera Calibration Based on Flexible 3D Target. Acta Opt. Sin. 2009, 29, 3433–3439. [Google Scholar]
- Liu, Z.; Li, F.; Li, X.; Zhang, G. A novel and accurate calibration method for cameras with large field of view using combined small targets. Measurement 2015, 64, 1–16. [Google Scholar] [CrossRef]
- An, G.H.; Lee, S.; Seo, M.-W.; Yun, K.; Cheong, W.-S.; Kang, S.-J. Charuco Board-Based Omnidirectional Camera Calibration Method. Electronics 2018, 7, 421. [Google Scholar] [CrossRef] [Green Version]
- Bergamasco, F.; Albarelli, A.; Cosmo, L.; Rodolà, E.; Torsello, A. An Accurate and Robust Artificial Marker based on Cyclic Codes. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergamasco, F.; Cosmo, L.; Gasparetto, A.; Albarelli, A.; Torsello, A. Parameter-Free Lens Distortion Calibration of Central Cameras. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Bergamasco, F.; Albarelli, A.; Cosmo, L.; Torsello, A.; Rodola, E.; Cremers, D. Adopting an unconstrained ray model in light-field cameras for 3D shape reconstruction. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. In Numerical Analysis; Watson, G.A., Ed.; Springer: Berlin/Heidelberg, Germany, 1978; p. 630. [Google Scholar]
Point-Data | Radius (mm) | RMSE (mm) | Error (%) |
---|---|---|---|
Data 1 | 477.94 | 0.02 | 0.49 |
Data 2 | 478.32 | 0.02 | 0.57 |
Data 3 | 472.48 | 0.02 | 0.66 |
Data 4 | 478.54 | 0.01 | 0.61 |
Data 5 | 472.37 | 0.02 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, R.; Wang, Z.; Zou, Z. Accurate Calibration of a Large Field of View Camera with Coplanar Constraint for Large-Scale Specular Three-Dimensional Profile Measurement. Sensors 2023, 23, 3464. https://doi.org/10.3390/s23073464
Lu R, Wang Z, Zou Z. Accurate Calibration of a Large Field of View Camera with Coplanar Constraint for Large-Scale Specular Three-Dimensional Profile Measurement. Sensors. 2023; 23(7):3464. https://doi.org/10.3390/s23073464
Chicago/Turabian StyleLu, Rongsheng, Zhizhuo Wang, and Zhiting Zou. 2023. "Accurate Calibration of a Large Field of View Camera with Coplanar Constraint for Large-Scale Specular Three-Dimensional Profile Measurement" Sensors 23, no. 7: 3464. https://doi.org/10.3390/s23073464
APA StyleLu, R., Wang, Z., & Zou, Z. (2023). Accurate Calibration of a Large Field of View Camera with Coplanar Constraint for Large-Scale Specular Three-Dimensional Profile Measurement. Sensors, 23(7), 3464. https://doi.org/10.3390/s23073464