Transfer Learning in Trajectory Decoding: Sensor or Source Space?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description
2.2. Experimental Paradigm
2.3. Data Processing
2.4. Source Localization and Dimensionality Reduction
2.5. Decoder
2.5.1. Recursive Exponential Weighted PLS (REWPLS)
2.5.2. Square-Root Unscented Kalman Filter (SR-UKF)
2.6. Simulated Inter-Session Transfer Learning Scenarios
2.6.1. Generalized Model (Gen)
2.6.2. Cumulative Generalized Model (GenC)
2.6.3. Individual Model (Ind)
2.6.4. Cumulative Individual Model (IndC)
2.7. Performance Evaluation
2.7.1. Decoding Performance
2.7.2. Comparing REWPLS and PLSREGRESS
2.7.3. Comparing Simulated Online Experiments
2.7.4. Decoding Patterns
3. Results
3.1. Comparing REWPLS to PLSREGRESS
3.2. Decoding Performance
3.3. Comparing Update Strategies
3.4. Decoding Patterns for Generalized Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pfurtscheller, G.; da Silva, F.H.L. Event-Related EEG/MEG Synchronization and Desynchronization: Basic Principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [Google Scholar] [CrossRef]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain-Computer Interfaces for Communication and Control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Müller-Putz, G.R.; Schwarz, A.; Pereira, J.; Ofner, P. From Classic Motor Imagery to Complex Movement Intention Decoding. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2016; Volume 228, pp. 39–70. ISBN 9780128042168. [Google Scholar]
- Müller-Putz, G.R.; Ofner, P.; Schwarz, A.; Pereira, J.; Pinegger, A.; Dias, C.L.; Hehenberger, L.; Kobler, R.; Sburlea, A.I. Towards Non-Invasive EEG-Based Arm/Hand-Control in Users with Spinal Cord Injury. In Proceedings of the 2017 5th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Republic of Korea, 9–11 January 2017; pp. 63–65. [Google Scholar]
- Bradberry, T.J.; Gentili, R.J.; Contreras-Vidal, J.L. Reconstructing Three-Dimensional Hand Movements from Noninvasive Electroencephalographic Signals. J. Neurosci. 2010, 30, 3432–3437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobler, R.J.; Sburlea, A.I.; Mondini, V.; Hirata, M.; Müller-Putz, G.R. Distance- and Speed-Informed Kinematics Decoding Improves M/EEG Based Upper-Limb Movement Decoder Accuracy. J. Neural Eng. 2020, 17, 056027. [Google Scholar] [CrossRef]
- Kobler, R.J.; Sburlea, A.I.; Müller-Putz, G.R. Tuning Characteristics of Low-Frequency EEG to Positions and Velocities in Visuomotor and Oculomotor Tracking Tasks. Sci. Rep. 2018, 8, 17713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martınez-Cagigal, V.; Kobler, R.J.; Mondini, V.; Hornero, R.; Müller-Putz, G.R. Non-Linear Online Low-Frequency EEG Decoding of Arm Movements during a Pursuit Tracking Task. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; p. 5. [Google Scholar]
- Mondini, V.; Kobler, R.J.; Sburlea, A.I.; Müller-Putz, G.R. Continuous Low-Frequency EEG Decoding of Arm Movement for Closed-Loop, Natural Control of a Robotic Arm. J. Neural Eng. 2020, 17, 046031. [Google Scholar] [CrossRef]
- Pulferer, H.S.; Ásgeirsdóttir, B.; Mondini, V.; Sburlea, A.I.; Müller-Putz, G.R. Continuous 2D Trajectory Decoding from Attempted Movement: Across-Session Performance in Able-Bodied and Feasibility in a Spinal Cord Injured Participant. J. Neural Eng. 2022, 19, 036005. [Google Scholar] [CrossRef]
- Sosnik, R.; Zheng, L. Reconstruction of Hand, Elbow and Shoulder Actual and Imagined Trajectories in 3D Space Using EEG Current Source Dipoles. J. Neural Eng. 2021, 18, 056011. [Google Scholar] [CrossRef]
- Srisrisawang, N.; Müller-Putz, G.R. Applying Dimensionality Reduction Techniques in Source-Space Electroencephalography via Template and Magnetic Resonance Imaging-Derived Head Models to Continuously Decode Hand Trajectories. Front. Hum. Neurosci. 2022, 16, 830221. [Google Scholar] [CrossRef] [PubMed]
- Müller-Putz, G.R.; Mondini, V.; Martinez-Cagigal, V.; Kobler, R.J.; Pereira, J.; Dias, C.L.; Hehenberger, L.; Sburlea, A.I. Decoding of Continuous Movement Attempt in 2-Dimensions from Non-Invasive Low Frequency Brain Signals. In Proceedings of the 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), Virtual Event, Italy, 4–6 May 2022; pp. 322–325. [Google Scholar]
- Antelis, J.M.; Montesano, L.; Ramos-Murguialday, A.; Birbaumer, N.; Minguez, J. On the Usage of Linear Regression Models to Reconstruct Limb Kinematics from Low Frequency EEG Signals. PLoS ONE 2013, 8, e61976. [Google Scholar] [CrossRef] [Green Version]
- Korik, A. Decoding Imagined 3D Hand Movement Trajectories From EEG: Evidence to Support the Use of Mu, Beta, and Low Gamma Oscillations. Front. Neurosci. 2018, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Korik, A.; Sosnik, R.; Siddique, N.; Coyle, D. Imagined 3D Hand Movement Trajectory Decoding from Sensorimotor EEG Rhythms. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; p. 7. [Google Scholar]
- Úbeda, A.; Azorín, J.M.; Chavarriaga, R.; Millan, J.d.R. Classification of Upper Limb Center-out Reaching Tasks by Means of EEG-Based Continuous Decoding Techniques. J. Neuroeng. Rehabil. 2017, 14, 9. [Google Scholar] [CrossRef] [Green Version]
- Perdikis, S.; Millan, J.d.R. Brain-Machine Interfaces: A Tale of Two Learners. IEEE Syst. Man Cybern. Mag. 2020, 6, 12–19. [Google Scholar] [CrossRef]
- Quinonero-Candela, J.; Sugiyama, M.; Schwaighofer, A.; Lawrence, N.D. Dataset Shift in Machine Learning; Quiñonero-Candela, J., Ed.; Neural Information Processing Series; MIT Press: Cambridge, MA, USA, 2009; ISBN 9780262170055. [Google Scholar]
- Lotte, F.; Congedo, M.; Lécuyer, A.; Lamarche, F.; Arnaldi, B. A Review of Classification Algorithms for EEG-Based Brain-Computer Interfaces. J. Neural Eng. 2007, 4, R1–R13. [Google Scholar] [CrossRef] [Green Version]
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A Review of Classification Algorithms for EEG-Based Brain–Computer Interfaces: A 10 Year Update. J. Neural Eng. 2018, 15, 031005. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Wang, P.; Lu, J.; Zhang, B.; Tang, Z. A Review on Transfer Learning for Brain-Computer Interface Classification. In Proceedings of the 2015 5th International Conference on Information Science and Technology (ICIST), Changsha, China, 24–26 April 2015; pp. 315–322. [Google Scholar]
- Zhang, K.; Xu, G.; Zheng, X.; Li, H.; Zhang, S.; Yu, Y.; Liang, R. Application of Transfer Learning in EEG Decoding Based on Brain-Computer Interfaces: A Review. Sensors 2020, 20, 6321. [Google Scholar] [CrossRef] [PubMed]
- De Jong, S. SIMPLS: An Alternative Approach to Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 1993, 18, 251–263. [Google Scholar] [CrossRef]
- Dayal, B.S.; MacGregor, J.F. Recursive Exponentially Weighted PLS and Its Applications to Adaptive Control and Prediction. J. Process Control 1997, 7, 169–179. [Google Scholar] [CrossRef]
- Dayal, B.S.; MacGregor, J.F. Improved PLS Algorithms. J. Chemom. 1997, 11, 73–85. [Google Scholar] [CrossRef]
- Lindgren, F.; Geladi, P.; Wold, S. The Kernel Algorithm for PLS. J. Chemom. 1993, 7, 45–59. [Google Scholar] [CrossRef]
- Eliseyev, A.; Auboiroux, V.; Costecalde, T.; Langar, L.; Charvet, G.; Mestais, C.; Aksenova, T.; Benabid, A.-L. Recursive Exponentially Weighted N-Way Partial Least Squares Regression with Recursive-Validation of Hyper-Parameters in Brain-Computer Interface Applications. Sci. Rep. 2017, 7, 16281. [Google Scholar] [CrossRef] [Green Version]
- Eliseyev, A.; Aksenova, T. Recursive N-Way Partial Least Squares for Brain-Computer Interface. PLoS ONE 2013, 8, e69962. [Google Scholar] [CrossRef] [Green Version]
- Kobler, R.J.; Sburlea, A.I.; Lopes-Dias, C.; Schwarz, A.; Hirata, M.; Müller-Putz, G.R. Corneo-Retinal-Dipole and Eyelid-Related Eye Artifacts Can Be Corrected Offline and Online in Electroencephalographic and Magnetoencephalographic Signals. NeuroImage 2020, 218, 117000. [Google Scholar] [CrossRef]
- Kobler, R.J.; Sburlea, A.I.; Mondini, V.; Müller-Putz, G.R. HEAR to Remove Pops and Drifts: The High-Variance Electrode Artifact Removal (HEAR) Algorithm. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019. [Google Scholar]
- Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: A User-Friendly Application for MEG/EEG Analysis. Comput. Intell. Neurosci. 2011, 2011, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Collins, D.L.; Zijdenbos, A.P.; Baaré, W.F.C.; Evans, A.C. ANIMAL + INSECT: Improved Cortical Structure Segmentation. In Information Processing in Medical Imaging; Kuba, A., Šáamal, M., Todd-Pokropek, A., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1613, pp. 210–223. ISBN 9783540661672. [Google Scholar]
- Fonov, V.; Evans, A.C.; Botteron, K.; Almli, C.R.; McKinstry, R.C.; Collins, D.L. Unbiased Average Age-Appropriate Atlases for Pediatric Studies. NeuroImage 2011, 54, 313–327. [Google Scholar] [CrossRef] [Green Version]
- Fonov, V.; Evans, A.; McKinstry, R.; Almli, C.; Collins, D. Unbiased Nonlinear Average Age-Appropriate Brain Templates from Birth to Adulthood. NeuroImage 2009, 47, S102. [Google Scholar] [CrossRef]
- McCann, H.; Pisano, G.; Beltrachini, L. Variation in Reported Human Head Tissue Electrical Conductivity Values. Brain Topogr. 2019, 32, 825–858. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Marqui, R.D. Standardized Low-Resolution Brain Electromagnetic Tomography (SLORETA): Technical Details. Methods Find. Exp. Clin. Pharmacol. 2002, 24, 5–12. [Google Scholar]
- Klein, A.; Ghosh, S.S.; Bao, F.S.; Giard, J.; Häme, Y.; Stavsky, E.; Lee, N.; Rossa, B.; Reuter, M.; Neto, E.C.; et al. Mindboggling Morphometry of Human Brains. PLoS Comput. Biol. 2017, 13, e1005350. [Google Scholar] [CrossRef] [Green Version]
- Van der Merwe, R.; Wan, E.A. The Square-Root Unscented Kalman Filter for State and Parameter-Estimation. In Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing (Cat. No.01CH37221), Salt Lake City, UT, USA, 7–11 May 2001; Volume 6, pp. 3461–3464. [Google Scholar]
- Wan, E.A.; Van Der Merwe, R. The Unscented Kalman Filter for Nonlinear Estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), Lake Louise, AB, Canada, 4 October 2000; pp. 153–158. [Google Scholar]
- Camacho, J.; Pérez-Villegas, A.; Rodríguez-Gómez, R.A.; Jiménez-Mañas, E. Multivariate Exploratory Data Analysis (MEDA) Toolbox for Matlab. Chemom. Intell. Lab. Syst. 2015, 143, 49–57. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Haufe, S.; Meinecke, F.; Görgen, K.; Dähne, S.; Haynes, J.-D.; Blankertz, B.; Bießmann, F. On the Interpretation of Weight Vectors of Linear Models in Multivariate Neuroimaging. NeuroImage 2014, 87, 96–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ofner, P.; Schwarz, A.; Pereira, J.; Müller-Putz, G.R. Upper Limb Movements Can Be Decoded from the Time-Domain of Low-Frequency EEG. PLoS ONE 2017, 12, e0182578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Maaten, L.; Hinton, G. Visualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Alin, A. Comparison of PLS Algorithms When Number of Objects Is Much Larger than Number of Variables. Stat. Pap. 2009, 50, 711–720. [Google Scholar] [CrossRef]
- Jiaen, L.; Perdoni, C.; Bin, H. Hand Movement Decoding by Phase-Locking Low Frequency EEG Signals. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 6335–6338. [Google Scholar]
- Lv, J.; Li, Y.; Gu, Z. Decoding Hand Movement Velocity from Electroencephalogram Signals during a Drawing Task. Biomed. Eng. Online 2010, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Edelman, B.J.; Meng, J.; Suma, D.; Zurn, C.; Nagarajan, E.; Baxter, B.S.; Cline, C.C.; He, B. Noninvasive Neuroimaging Enhances Continuous Neural Tracking for Robotic Device Control. Sci. Robot. 2019, 4, eaaw6844. [Google Scholar] [CrossRef]
- Li, C.; Guan, H.; Huang, Z.; Chen, W.; Li, J.; Zhang, S. Improving Movement-Related Cortical Potential Detection at the EEG Source Domain. In Proceedings of the 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), Virtual Event, Italy, 4–6 May 2021; pp. 214–217. [Google Scholar]
- Qin, L.; Ding, L.; He, B. Motor Imagery Classification by Means of Source Analysis for Brain–Computer Interface Applications. J. Neural Eng. 2004, 1, 135–141. [Google Scholar] [CrossRef]
- Handiru, V.S.; Vinod, A.P.; Guan, C. EEG Source Space Analysis of the Supervised Factor Analytic Approach for the Classification of Multi-Directional Arm Movement. J. Neural Eng. 2017, 14, 046008. [Google Scholar] [CrossRef]
- Xygonakis, I.; Athanasiou, A.; Pandria, N.; Kugiumtzis, D.; Bamidis, P.D. Decoding Motor Imagery through Common Spatial Pattern Filters at the EEG Source Space. Comput. Intell. Neurosci. 2018, 2018, 7957408. [Google Scholar] [CrossRef] [Green Version]
- Srisrisawang, N.; Müller-Putz, G. An Investigation on Dimensionality Reduction in the Source-Space-Based Hand Trajectory Decoding. In Proceedings of the Annual Meeting of the Austrian Society of the Biomedical Engineering, Graz, Austria, 30 September–1 October 2021; ÖGBMT: Vienna, Austria, 2021. [Google Scholar]
- Hehenberger, L.; Kobler, R.J.; Lopes-Dias, C.; Srisrisawang, N.; Tumfart, P.; Uroko, J.B.; Torke, P.R.; Müller-Putz, G.R. Long-Term Mutual Training for the CYBATHLON BCI Race with a Tetraplegic Pilot: A Case Study on Inter-Session Transfer and Intra-Session Adaptation. Front. Hum. Neurosci. 2021, 15, 635777. [Google Scholar] [CrossRef]
- Benaroch, C.; Sadatnejad, K.; Roc, A.; Appriou, A.; Monseigne, T.; Pramij, S.; Mladenovic, J.; Pillette, L.; Jeunet, C.; Lotte, F. Long-Term BCI Training of a Tetraplegic User: Adaptive Riemannian Classifiers and User Training. Front. Hum. Neurosci. 2021, 15, 635653. [Google Scholar] [CrossRef]
- Kubler, A.; Nijboer, F.; Mellinger, J.; Vaughan, T.M.; Pawelzik, H.; Schalk, G.; McFarland, D.J.; Birbaumer, N.; Wolpaw, J.R. Patients with ALS Can Use Sensorimotor Rhythms to Operate a Brain-Computer Interface. Neurology 2005, 64, 1775–1777. [Google Scholar] [CrossRef]
- Robinson, N.; Chouhan, T.; Mihelj, E.; Kratka, P.; Debraine, F.; Wenderoth, N.; Guan, C.; Lehner, R. Design Considerations for Long Term Non-Invasive Brain Computer Interface Training with Tetraplegic CYBATHLON Pilot. Front. Hum. Neurosci. 2021, 15, 648275. [Google Scholar] [CrossRef]
- Saeedi, S.; Chavarriaga, R.; Millan, J.d.R. Long-Term Stable Control of Motor-Imagery BCI by a Locked-In User through Adaptive Assistance. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 380–391. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srisrisawang, N.; Müller-Putz, G.R. Transfer Learning in Trajectory Decoding: Sensor or Source Space? Sensors 2023, 23, 3593. https://doi.org/10.3390/s23073593
Srisrisawang N, Müller-Putz GR. Transfer Learning in Trajectory Decoding: Sensor or Source Space? Sensors. 2023; 23(7):3593. https://doi.org/10.3390/s23073593
Chicago/Turabian StyleSrisrisawang, Nitikorn, and Gernot R. Müller-Putz. 2023. "Transfer Learning in Trajectory Decoding: Sensor or Source Space?" Sensors 23, no. 7: 3593. https://doi.org/10.3390/s23073593
APA StyleSrisrisawang, N., & Müller-Putz, G. R. (2023). Transfer Learning in Trajectory Decoding: Sensor or Source Space? Sensors, 23(7), 3593. https://doi.org/10.3390/s23073593