The Effect of Stress on a Personal Identification System Based on Electroencephalographic Signals
Abstract
:1. Introduction
2. Datasets
2.1. SAM 40 Dataset
2.2. DEAP Dataset
3. Experiment
3.1. Feature Extraction
3.2. Raw EEG Signals
4. Results and Discussion
- In both experiments, subject identification in the stressed state caused a reduction in the biometric system’s performance. The difference in identification system accuracy when enrollment was performed in the calm or relaxed state and identification was performed in the stressed state is clarified in Figure 4 and Figure 5.
- The identification system based on feature extraction showed the best results in the calm state, where the best accuracy was achieved by using time domain feature (Hjorth parameters (HPs)), while in the stressed state, non-linear features (Higuchi’s fractal dimension (HFD)) gave the best performance.
- The deep learning approaches were capable of learning features from raw EEG signals. The performances of Shallow ConvNet and EEGNet were very close to each other, while Deep ConvNet gave the worst performance. The biometric system based on the DL techniques was less affected by the change in human emotional states (relaxed or stressed) than the system based on hand-crafted features and the ML classifier.
- In the SAM 40 dataset, when testing different types of stress, it is clear that stress caused by identifying mirror images showed the least effect on biometric system performance. Stress caused by solving arithmetic operations and the Stroop color-word test showed the highest impact on system performance (the Stroop color-word test’s performance was slightly better than solving arithmetic operations).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pradhan, A.; He, J.; Jiang, N. Score, Rank, and Decision-Level Fusion Strategies of Multicode Electromyogram-Based Verification and Identification Biometrics. IEEE J. Biomed. Health Inform. 2022, 26, 1068–1079. [Google Scholar] [CrossRef] [PubMed]
- Oloyede, M.O.; Hancke, G.P. Unimodal and Multimodal Biometric Sensing Systems: A Review. IEEE Access 2016, 4, 7532–7555. [Google Scholar] [CrossRef]
- Bak, S.; Jeong, J. User Biometric Identification Methodology via EEG-Based Motor Imagery Signals. IEEE Access 2023, 11, 41303–41314. [Google Scholar] [CrossRef]
- Wijayanto, I.; Hadiyoso, S.; Sekarningrum, F.A. Biometric Identification Based on EEG Signal with Photo Stimuli using Hjorth Descriptor. In Proceedings of the 8th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 24–26 June 2020; pp. 1–4. [Google Scholar]
- Thomas, K.P.; Vinod, A.P. Biometric identification of persons using sample entropy features of EEG during rest state. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 003487–003492. [Google Scholar]
- Piciucco, E.; Maiorana, E.; Falzon, O.; Camilleri, K.P.; Campisi, P. Steady-State Visual Evoked Potentials for EEG-Based Biometric Identification. In Proceedings of the 2017 International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 20–22 September 2017; pp. 1–5. [Google Scholar]
- Monsy, J.C.; Vinod, A.P. EEG-based biometric identification using frequency-weighted power feature. IET Biom. 2020, 9, 251–258. [Google Scholar] [CrossRef]
- Abdel-Ghaffar, E.A.; Daoudi, M. Personal authentication and cryptographic key generation based on electroencephalographic signals. J. King Saud Univ.-Comput. Inf. Sci. 2023, 5, 101541. [Google Scholar] [CrossRef]
- Tatar, A.B. Biometric identification system using EEG signals. Neural Comput. Appl. 2023, 35, 1009–1023. [Google Scholar] [CrossRef]
- Lai, C.Q.; Ibrahim, H.; Abdullah, M.Z.; Abdullah, J.M.; Suandi, S.A.; Azman, A. Arrangements of Resting State Electroencephalography as the Input to Convolutional Neural Network for Biometric Identification. Comput. Intell. Neurosci. 2019, 2019, 7895924. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Qiu, R.; Liu, H.; Ling, Z.; Zhang, T.; Wang, J. Individual Recognition in Schizophrenia using Deep Learning Methods with Random Forest and Voting Classifiers: Insights from Resting State EEG Streams. arXiv 2018, arXiv:1707.03467v2. [Google Scholar]
- Das, B.B.; Ram, S.K.; Babu, K.S.; Mohapatra, R.K.; Mohanty, S.P. Person identification using autoencoder-CNN approach with multitask-based EEG biometric. Multimed. Tools Appl. 2024. [Google Scholar] [CrossRef]
- Mao, Z.; Yao, W.X.; Huang, Y. EEG-based biometric identification with deep learning. In Proceedings of the 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai, China, 25–28 May 2017; pp. 609–612. [Google Scholar]
- Chen, J.X.; Mao, Z.J.; Yao, W.X.; Huang, Y.F. EEG-based biometric identification with convolutional neural network. Multimed. Tools Appl. 2020, 79, 10655–10675. [Google Scholar] [CrossRef]
- Fidas, C.A.; Lyras, D. A Review of EEG-Based User Authentication: Trends and Future Research Directions. IEEE Access 2023, 11, 22917–22934. [Google Scholar] [CrossRef]
- Biradar, S.D.; Nalbalwar, S.L.; Deosarkar, S.B. Biometric Security using EEG Signal Processing—Acquisition, Representation and Classification Approaches. In Proceedings of the 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), Ballari, India, 23–24 April 2022; pp. 1–6. [Google Scholar]
- O’Connor, D.B.; Thayer, J.F.; Vedhara, K. Stress and health: A review of psychobiological processes. Annu. Rev. Psychol. 2021, 72, 663–688. [Google Scholar] [CrossRef]
- Thoits, P.A. Stress and health: Major findings and policy implications. J. Health Soc. Behav. 2010, 51, S41–S53. [Google Scholar] [CrossRef]
- Hou, X.; Liu, Y.; Sourina, O.; Tan, Y.R.E.; Wang, L.; Mueller-Wittig, W. EEG based stress monitoring. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, China, 9–12 October 2015; pp. 3110–3115. [Google Scholar]
- Monroe, S.M. Modern approaches to conceptualizing and measuring human life stress. Annu. Rev. Clin. Psychol. 2008, 4, 33–52. [Google Scholar] [CrossRef] [PubMed]
- Giannakakis, G.; Grigoriadis, D.; Giannakaki, K.; Simantiraki, O.; Roniotis, A.; Tsiknakis, M. Review on psychological stress detection using biosignals. IEEE Trans. Affect. Comput. 2019, 13, 440–460. [Google Scholar] [CrossRef]
- She, Q.; Zhang, C.; Fang, F.; Ma, Y.; Zhang, Y. Multisource Associate Domain Adaptation for Cross-Subject and Cross-Session EEG Emotion Recognition. IEEE Trans. Instrum. Meas. 2023, 72, 2515512. [Google Scholar] [CrossRef]
- Li, T.; Fu, B.; Wu, Z.; Liu, Y. EEG-Based Emotion Recognition Using Spatial-Temporal-Connective Features via Multi-Scale CNN. IEEE Access 2023, 11, 41859–41867. [Google Scholar] [CrossRef]
- Abdel-Ghaffar, E.A.; Wu, Y.; Daoudi, M. Subject-Dependent Emotion Recognition System Based on Multidimensional Electroencephalographic Signals: A Riemannian Geometry Approach. IEEE Access 2022, 10, 14993–15006. [Google Scholar] [CrossRef]
- Abdel-Ghaffar, E.A.; Daoudi, M. Emotion Recognition from Multidimensional Electroencephalographic Signals on the Manifold of Symmetric Positive Definite Matrices. In Proceedings of the 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), Shenzhen, China, 6–8 August 2020; pp. 354–359. [Google Scholar]
- Patel, A.; Nariani, D.; Rai, A. Mental Stress Detection using EEG and Recurrent Deep Learning. In Proceedings of the 2023 IEEE Applied Sensing Conference (APSCON), Bengaluru, India, 23–25 January 2023; pp. 1–3. [Google Scholar]
- Wen, T.Y.; Mohd, A.; Siti, A. Hybrid Approach of EEG Stress Level Classification Using K-Means Clustering and Support Vector Machine. IEEE Access 2022, 10, 18370–18379. [Google Scholar] [CrossRef]
- Fu, R.; Chen, Y.; Huang, Y.; Chen, S.; Duan, F.; Li, J.; Wu, J.; Jiang, D.; Gao, J.; Gu, J.; et al. Symmetric Convolutional and Adversarial Neural Network Enables Improved Mental Stress Classification From EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1384–1400. [Google Scholar] [CrossRef]
- Roy, B.; Malviya, L.; Kumar, R.; Mal, S.; Kumar, A.; Bhowmik, T.; Hu, J.W. Hybrid Deep Learning Approach for Stress Detection Using Decomposed EEG Signals. Diagnostics 2023, 13, 1936. [Google Scholar] [CrossRef] [PubMed]
- Rateb, K.; Fares, A.S.; Usman, T.; Fabio, B.; Fadwa, A.M.; Hasan, A.N. A Review on Mental Stress Assessment Methods Using EEG Signals. Sensors 2021, 21, 5043. [Google Scholar] [CrossRef] [PubMed]
- Arnau-González, P.; Arevalillo-Herráez, M.; Katsigiannis, S.; Ramzan, N. On the Influence of Affect in EEG-Based Subject Identification. IEEE Trans. Affect. Comput. 2021, 12, 391–401. [Google Scholar] [CrossRef]
- Dang, N.; Dat, T.; Dharmendra, S.; Wanli, M. Emotional Influences on Cryptographic Key Generation Systems using EEG signals. Procedia Comput. Sci. 2018, 126, 703–712. [Google Scholar]
- Ghosh, R.; Deb, N.; Sengupta, K.; Phukan, A.; Choudhury, N.; Kashyap, S.; Phadikar, S.; Saha, R.; Das, P.; Sinha, N.; et al. SAM 40: Dataset of 40 subject EEG recordings to monitor the induced-stress while performing Stroop color-word test, arithmetic task, and mirror image recognition task. Data Brief 2022, 40, 107772. [Google Scholar] [CrossRef] [PubMed]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef]
- Hasan, M.J.; Kim, J.M. A Hybrid Feature Pool-Based Emotional Stress State Detection Algorithm Using EEG Signals. Brain Sci. 2019, 9, 376. [Google Scholar] [CrossRef] [PubMed]
- Shon, D.; Im, K.; Park, J.H.; Lim, D.S.; Jang, B.; Kim, J.M. Emotional Stress State Detection Using Genetic Algorithm-Based Feature Selection on EEG Signals. Int. J. Environ. Res. Public Health 2018, 15, 2461. [Google Scholar] [CrossRef] [PubMed]
- Hag, A.; Handayani, D.; Altalhi, M.; Pillai, T.; Mantoro, T.; Kit, M.H.; Al-Shargie, F. Enhancing EEG-Based Mental Stress State Recognition Using an Improved Hybrid Feature Selection Algorithm. Sensors 2021, 21, 8370. [Google Scholar] [CrossRef]
- Grover, C.; Turk, N. Rolling Element Bearing Fault Diagnosis using Empirical Mode Decomposition and Hjorth Parameters. Procedia Comput. Sci. 2020, 167, 1484–1494. [Google Scholar] [CrossRef]
- Mehmood, R.M.; Bilal, M.; Vimal, S.; Lee, S.W. EEG-based affective state recognition from human brain signals by using Hjorth-activity. Measurement 2022, 202, 111738. [Google Scholar] [CrossRef]
- Raghavendra, B.S.; Dutt, N.D. Signal characterization using fractal dimension. Fractals 2010, 18, 287–292. [Google Scholar] [CrossRef]
- García-Martínez, B.; Martínez-Rodrigo, A.; Alcaraz, R.; Fernández-Caballero, A. A Review on Nonlinear Methods Using Electroencephalographic Recordings for Emotion Recognition. IEEE Trans. Affect. Comput. 2021, 12, 801–820. [Google Scholar] [CrossRef]
- Raghavendra, B.S.; Dutt, N.D.; Halahalli, H.N.; John, J.P. Complexity analysis of EEG in patients with schizophrenia using fractal dimension. Physiol. Meas. 2009, 30, 8. [Google Scholar] [CrossRef] [PubMed]
- Esteller, R.; Vachtsevanos, G.; Echauz, J.; Litt, B. A comparison of waveform fractal dimension algorithms. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2001, 48, 177–183. [Google Scholar] [CrossRef]
- Gladun, K.V. Higuchi Fractal Dimension as a Method for Assessing Response to Sound Stimuli in Patients with Diffuse Axonal Brain Injury. Sovrem Tekhnol. Med. 2021, 12, 63–70. [Google Scholar] [CrossRef]
- Kesić, S.; Spasić, S.Z. Application of Higuchi’s fractal dimension from basic to clinical neurophysiology: A review. Comput. Methods Programs Biomed. 2016, 133, 55–70. [Google Scholar] [CrossRef]
- Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef] [PubMed]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain—computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef]
- Yang, J.; Ma, Z.; Wang, J.; Fu, Y. A Novel Deep Learning Scheme for Motor Imagery EEG Decoding Based on Spatial Representation Fusion. IEEE Access 2020, 8, 202100–202110. [Google Scholar] [CrossRef]
- Dai, G.; Zhou, J.; Huang, J.; Wang, N. HS-CNN: A CNN with hybrid convolution scale for EEG motor imagery classification. J. Neural Eng. 2020, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Köllőd, C.M.; Adolf, A.; Iván, K.; Márton, G.; Ulbert, I. Deep Comparisons of Neural Networks from the EEGNet Family. Electronics 2023, 12, 2743. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Y.; Yu, Y.; Liu, K.; Liu, Y.; Zhou, Z. Convolutional Neural Network with a Topographic Representation Module for EEG-Based Brain Computer Interfaces. Brain Sci. 2023, 13, 268. [Google Scholar] [CrossRef] [PubMed]
Item | SAM 40 | DEAP |
---|---|---|
Recording Device | Emotiv Epoc Flex gel kit | Biosemi ActiveII |
# of Subjects | 40 | 32 |
Subjects’ Description | 26 males, 14 females | 16 males, 16 females |
# of Electrodes | 32 | 32 |
Sampling Rate | 128 Hz | Originally 512 Hz, down-sampled to 128 Hz |
Stimuli | Stroop color-word test, solving arithmetic questions, identification of symmetric mirror images, and a state of relaxation. | Different emotions caused by watching musical videos. |
Trial Duration | 25 s | 63 s |
Labels | Relaxed and three types of stress. | Continuous 9-point scale for arousal, valance, dominance, and liking. |
Ref. | S, C | Dataset | Features | Classifier | Performance (CRR%) |
---|---|---|---|---|---|
[3] | 52, 64 | BMI | CSP, ERD/S, FFT, AR | SVM GNB | up to: 98.97 up to: 97.47 |
[4] | 5, 4 | SCD (photo stimuli) | HPs | NNT | up to: 100 |
[5] | 109, 64 | PhysioNet | PSD and SE | Mahalanobis distance | EO: 99.7 EC: 98.6 |
[6] | 25, 19 | SCD (SSVEPs) | MFCCs, AR | Manhattan distance | MFCCs: 95.87–96.0 AR: 91.47–94.53 |
[9] | 96, 64 | PhysioNet | 15 features | DNN, SVM, DT, RF | DT: 98.63, RF: 100, KNN: 99.96, SVM: 99.91, DNN:100 |
[10] | 109, 64 | PhysioNet | Raw EEG signals | CNN | 83.21 |
[11] | 120, 64 | SCD (rest state) HC, CHR, FES | Raw EEG signals | DNN | HC: 99.2, FES: 96.7, CHR: 81.6 |
[12] | 109, 64 | PhysioNet | Raw EEG signals | CNN | task: 87.60, non-task: 99.89 |
[13] | 100,46 | BCIT | Raw EEG signals | CNN | 97 |
[14] | 157, 64 | X2 RSVP, XB Driving, DEAP, CT2WS RSVP | Raw EEG signals | CNN | 96 |
Selected Features | Classifier | Calm | Stress | ||
---|---|---|---|---|---|
Acc. | F-Score | Acc. | F-Score | ||
TD-HP | SVM | 97 | |||
FD-BP | SVM | 98 | 95 | ||
NL-HFD | SVM | 98 | 96 | ||
Raw EEG | EEGNet | 95 | 94 | 94 | |
Shallow ConvNet | 99 | ||||
Deep ConvNet | 97 | 92 |
Selected Features | Relax | MI-Stress | ST-Stress | AR-Stress | |||||
---|---|---|---|---|---|---|---|---|---|
Classifier | Acc. | F-Score | Acc. | F-Score | Acc. | F-Score | Acc. | F-Score | |
TD-HP | SVM | 88 | 87 | 84 | |||||
FD-BP | SVM | 96 | 88 | 86 | 84 | ||||
NL-HFD | SVM | 91 | 91 | 90 | 86 | ||||
Raw EEG | EEGNet | 95 | |||||||
Shallow ConvNet | 94 | 93 | 89 | 89 | |||||
Deep ConvNet | 85 | 82 | 75 | 74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Ghaffar, E.A.; Salama, M. The Effect of Stress on a Personal Identification System Based on Electroencephalographic Signals. Sensors 2024, 24, 4167. https://doi.org/10.3390/s24134167
Abdel-Ghaffar EA, Salama M. The Effect of Stress on a Personal Identification System Based on Electroencephalographic Signals. Sensors. 2024; 24(13):4167. https://doi.org/10.3390/s24134167
Chicago/Turabian StyleAbdel-Ghaffar, Eman A., and May Salama. 2024. "The Effect of Stress on a Personal Identification System Based on Electroencephalographic Signals" Sensors 24, no. 13: 4167. https://doi.org/10.3390/s24134167
APA StyleAbdel-Ghaffar, E. A., & Salama, M. (2024). The Effect of Stress on a Personal Identification System Based on Electroencephalographic Signals. Sensors, 24(13), 4167. https://doi.org/10.3390/s24134167