Advancements in Sensors and Analyses for Emotion Sensing
1. Introduction
2. Advancements in Sensors
3. Advancements in Analyses
4. Conclusions
Conflicts of Interest
References
- Lyubomirsky, S. Why are some people happier than others? The role of cognitive and motivational processes in well-being. Am. Psychol. 2001, 56, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Meiselman, H.L. A review of the current state of emotion research in product development. Food Res. Int. 2015, 76, 192–199. [Google Scholar] [CrossRef]
- Paul, E.S. Towards a comparative science of emotion: Affect and consciousness in humans and animals. Neurosci. Biobehav. Rev. 2020, 108, 749–770. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Khanna, A.; Gupta, D. Emotion recognition and detection methods: A comprehensive survey. J. Artif. Intell. Syst. 2020, 2, 53–79. [Google Scholar] [CrossRef]
- Westermann, R.; Spies, K.; Stahl, G.; Hesse, F.W. Relative effectiveness and validity of mood induction procedures: A meta-analysis. Eur. J. Soc. Psychol. 1996, 26, 557–580. [Google Scholar] [CrossRef]
- Ruef, A.M.; Levenson, R.W. Continuous measurement of emotion: The affect rating dial. In Handbook of Emotion Elicitation and Assessment; Coan, J.A., Allen, J.J.B., Eds.; Oxford University Press: New York, NY, USA, 2007; pp. 286–297. [Google Scholar]
- Suslow, T.; Kersting, A. Beyond face and voice: A review of alexithymia and emotion perception in music, odor, taste, and touch. Front. Psychol. 2021, 12, 707599. [Google Scholar] [CrossRef] [PubMed]
- Logsdon, R.G.; Gibbons, L.E.; McCurry, S.M.; Teri, L. Assessing quality of life in older adults with cognitive impairment. Psychosom. Med. 2002, 64, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Chambers, C.T.; Johnston, C. Developmental differences in children’s use of rating scales. J. Pediatr. Psychol. 2002, 27, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Winkielman, P.; Berridge, K.C. Unconscious emotion. Curr. Dir. Psychol. Sci. 2004, 13, 120–123. [Google Scholar] [CrossRef]
- Dzedzickis, A.; Kaklauskas, A.; Bucinskas, V. Human emotion recognition: Review of sensors and methods. Sensors 2020, 20, 592. [Google Scholar] [CrossRef]
- Sariyanidi, E.; Gunes, H.; Cavallaro, A. Automatic analysis of facial affect: A survey of registration, representation, and recognition. IEEE Trans Pattern Anal. Mach. Intell. 2015, 37, 1113–1133. [Google Scholar] [CrossRef] [PubMed]
- Levenson, R.W. The autonomic nervous system and emotion. Emot. Rev. 2014, 6, 100–112. [Google Scholar] [CrossRef]
- Cacioppo, J.T.; Berntson, G.G.; Klein, D.J. What is an emotion? The role of somatovisceral afference, with special emphasis on somatovisceral “illusions”. In Emotion and Social Behavior. IX; Clark, M.S., Ed.; Sage: Thousand Oaks, CA, USA, 1992; pp. 63–98. [Google Scholar]
- Saganowski, S.; Perz, B.; Polak, A.G.; Kazienko, P. Emotion recognition for everyday life using physiological signals from wearables: A systematic literature review. IEEE Trans. Affect Comput. 2023, 14, 1876–1897. [Google Scholar] [CrossRef]
- Younis, E.M.G.; Mohsen, S.; Houssein, E.H.; Ibrahim, O.A.S. Machine learning for human emotion recognition: A comprehensive review. Neural Comput. Appl. 2024, 36, 8901–8947. [Google Scholar] [CrossRef]
- Duran, J.I.; Reisenzein, R.; Fernandez-Dols, J.-M. Coherence between emotions and facial expressions: A research synthesis. In The Science of Facial Expression; Fernandez-Dols, J.-M., Russell, J.A., Eds.; Oxford University Press: New York, NY, USA, 2017; pp. 107–129. [Google Scholar]
- Kreibig, S.D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar] [CrossRef] [PubMed]
- Sato, W.; Minemoto, K.; Ikegami, A.; Nakauma, M.; Funami, T.; Fushiki, T. Facial EMG correlates of subjective hedonic responses during food consumption. Nutrients 2020, 12, 1174. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Kerr, G.; Sullivan, J.P. A critical review of consumer wearables, mobile applications, and equipment for providing biofeedback, monitoring stress, and sleep in physically active populations. Front. Physiol. 2018, 9, 743. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.T.; Sato, W. Electromyographic validation of spontaneous facial mimicry detection using automated facial action coding. Sensors 2023, 23, 9076. [Google Scholar] [CrossRef]
- Sato, W.; Kochiyama, T. Exploration of emotion dynamics sensing using trapezius EMG and fingertip temperature. Sensors 2022, 22, 6553. [Google Scholar] [CrossRef] [PubMed]
- Balconi, M.; Acconito, C.; Angioletti, L. Emotional effects in object recognition by the visually impaired people in grocery shopping. Sensors 2022, 22, 8442. [Google Scholar] [CrossRef]
- Algumaei, M.; Hettiarachchi, I.; Veerabhadrappa, R.; Bhatti, A. Physiological synchrony predict task performance and negative emotional state during a three-member collaborative task. Sensors 2023, 23, 2268. [Google Scholar] [CrossRef]
- Arabian, H.; Alshirbaji, T.A.; Schmid, R.; Wagner-Hartl, V.; Chase, J.G.; Moeller, K. Harnessing wearable devices for emotional intelligence: Therapeutic applications in digital health. Sensors 2023, 23, 8092. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Song, F.; Zhou, T.H.; Hao, J.; Ryu, K.H. EEG and ECG-based multi-sensor fusion computing for real-time fatigue driving recognition based on feedback mechanism. Sensors 2023, 23, 8386. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, A.; Kosaka, S.; Hama, Y.; Saito, K.; Terada, T. A curiosity estimation in storytelling with picture book for children using wearable sensors. Sensors 2024, 24, 4043. [Google Scholar] [CrossRef]
- John, V.; Kawanishi, Y. Progressive learning of a multimodal classifier Accounting for different modality combinations. Sensors 2023, 23, 4666. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Hao, J.; Zhou, T.H. ECG multi-emotion recognition based on heart rate variability signal features. Sensors 2023, 23, 8636. [Google Scholar] [CrossRef] [PubMed]
- Bahameish, M.; Stockman, T.; Carrión, J.R. Strategies for reliable stress recognition: A machine learning approach using heart rate variability features. Sensors 2024, 24, 3210. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Liu, Y.; Song, W.; Liang, Z.; Chen, X. A new network structure for speech emotion recognition research. Sensors 2024, 24, 1429. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhao, H.; Zhang, Z. Diversifying emotional dialogue generation via selective adversarial training. Sensors 2023, 23, 5904. [Google Scholar] [CrossRef]
- Friedman, B.H. Feelings and the body: The Jamesian perspective on autonomic specificity of emotion. Biol. Psychol. 2010, 84, 383–393. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, W. Advancements in Sensors and Analyses for Emotion Sensing. Sensors 2024, 24, 4166. https://doi.org/10.3390/s24134166
Sato W. Advancements in Sensors and Analyses for Emotion Sensing. Sensors. 2024; 24(13):4166. https://doi.org/10.3390/s24134166
Chicago/Turabian StyleSato, Wataru. 2024. "Advancements in Sensors and Analyses for Emotion Sensing" Sensors 24, no. 13: 4166. https://doi.org/10.3390/s24134166
APA StyleSato, W. (2024). Advancements in Sensors and Analyses for Emotion Sensing. Sensors, 24(13), 4166. https://doi.org/10.3390/s24134166